
Kriptografi Atasi Zarah Digital Signature
(KAZ-SIGN)

Algorithm Specifications and Supporting Documentation

(Version 1.2)

Muhammad Rezal Kamel Ariffin1 Nur Azman Abu2 Terry Lau Shue Chien3

Zahari Mahad1 Liaw Man Cheon4 Amir Hamzah Abd Ghafar1

Nurul Amiera Sakinah Abdul Jamal1

1Institute for Mathematical Research, Universiti Putra Malaysia
2Faculty of Information & Communication Technology, Universiti Teknikal Malaysia Melaka

3Faculty of Computing & Informatics, Multimedia University Malaysia
4Antrapolation Technology Sdn. Bhd., Selangor, Malaysia

Table of Contents
1 INTRODUCTION 1
2 THE DESIGN IDEALISME 1
3 MODULAR REDUCTION PROBLEM (MRP) 2
4 COMPLEXITY OF SOLVING THE MRP 2
5 THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001) 2
6 THE HERMANN MAY REMARKS (Herrmann and May, 2008) 2
7 THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM 3

7.1 Background 3
7.2 Utilized Functions 3
7.3 System Parameters 3
7.4 KAZ-SIGN Algorithms 4

8 THE DESIGN RATIONALE 6
8.1 Proof of correctness (Verification steps 21, 22, 23, 24, 25, 26, 27 and 28) 6
8.2 Proof of correctness (Verification steps 2, 3, 4, 5, 6, and 7: KAZ-SIGN dig-

ital signature forgery detection procedure type – 1) 6
8.3 Proof of correctness (Verification steps 8, 9, 10, 11, 12, 13 and 14: KAZ-

SIGN digital signature forgery detection procedure type – 2) 6
8.4 Proof of correctness (Verification steps 15, 16, 17, 18, 19 and 20: KAZ-

SIGN digital signature forgery detection procedure type – 3) 6
8.5 Complexity of deriving forged signature tuple, (S1 f 1,S2 f 1,S3 f 1) – For the

case of random S3 f 1 ∈ ZV2 and gcd(S3 f 1,GRg) = 1 7
8.6 Complexity of deriving forged signature tuple, (S1 f 1,S2 f 1,S3 f 1) – For the

case of random S3 f 1 ≡ r (mod V2) and gcd(S3 f 1,GRg) = 1 9
8.7 Complexity of deriving forged signature tuple, (S1 f 2,S2 f 2,S3 f 2) 11
8.8 Modular linear equation of S2. 12
8.9 Implementation of the Hidden Number Problem 13
8.10 Another “Expensive” Problem Related To KAZ-SIGN: The Second Order

Discrete Logarithm Problem (2-DLP) 13

9 KEY GENERATION, SIGNING AND VERIFICATION TIME COMPLEX-
ITY 14

10 SPECIFICATION OF KAZ-SIGN 14
11 IMPLEMENTATION AND PERFORMANCE 14

11.1 Key Generation, Signing and Verification Time Complexity 14
11.2 Parameter sizes 14
11.3 Key Generation, Signing and Verification Ease of Implementation 15
11.4 Key Generation, Signing and Verification Empirical Performance Data 15

i

12 ADVANTAGES AND LIMITATIONS 15
12.1 Key Length 15
12.2 Speed 16
12.3 No verification failure 16
12.4 Limitation 16

12.4.1 Based on unknown problem, the Modular Reduction Problem (MRP) 16

13 CLOSING REMARKS 16
14 ILLUSTRATIVE FULL SIZE TEST VECTORS – 1 18
15 ILLUSTRATIVE FULL SIZE TEST VECTORS – 2 21
16 ILLUSTRATIVE FULL SIZE TEST VECTORS – 3 23
17 ILLUSTRATIVE FULL SIZE TEST VECTORS – 4 25
18 ILLUSTRATIVE FULL SIZE TEST VECTORS – 5 27

ii KAZ-SIGN v1.2

Name of the proposed cryptosystem: KAZ-SIGN

Principal submitter: Muhammad Rezal Kamel Ariffin
Institute for Mathematical Research
Universiti Putra Malaysia
43400 UPM Serdang
Malaysia
Email: rezal@upm.edu.my
Phone: +60123766494

Auxilliary submitters: Nor Azman Abu
Terry Lau Shue Chien
Zahari Mahad
Liaw Man Cheon
Amir Hamzah Abd Ghafar
Nurul Amiera Sakinah Abdul Jamal

Inventor of the cryptosystem: Muhammad Rezal Kamel Ariffin

Owner of the cryptosystem: Muhammad Rezal Kamel Ariffin

Alternative point of contact: Amir Hamzah Abd Ghafar
Institute for Mathematical Research
Universiti Putra Malaysia
43400 UPM Serdang
Malaysia
Email: amir hamzah@upm.edu.my
Phone: +60132723347

iii KAZ-SIGN v1.2

1. INTRODUCTION

The proposed KAZ Digital Signature scheme, KAZ-SIGN (in Malay Kriptografi Atasi
Zarah - translated literally “cryptographic techniques overcoming particles”; particles here
referring to the photons) is built upon the hard mathematical problem coined as the Mod-
ular Reduction Problem (MRP). The idea revolves around the difficulty of reconstructing
an unknown parameter from a given modular reducted value of that parameter. The target
of the KAZ-SIGN design is to be a quantum resistant digital signature candidate with short
verification keys and signatures, verifying correctly approximately 100% of the time, based
on simple mathematics, having fast execution time and a potential candidate for seamless
drop-in replacement in current cryptographic software and hardware ecosystems.

2. THE DESIGN IDEALISME

(i) To be based upon a problem that could be proven analytically to require exponential
time to be solved;

(ii) To be able to prove analytically that the cryptosystem is indeed resistant towards
quantum computers;

(iii) To utilize problems mentioned in point (i) above in its full spectrum without having
to induce “weaknesses” in order for a trapdoor to be constructed;

(iv) To use “simple” mathematics in order to achieve maximum simplicity in design,
such that even practitioners with limited mathematical background will be able to
understand the arithmetic;

(v) Achieve 128 and 256-bit security with key length roughly equivalent to the non-
quantum secure Elliptic Curve Cryptosystem (ECC);

(vi) To achieve maximum speed upon having simplicity in design and short key length;

(vii) To have a sufficiently large signature space;

(viii) The computation overhead for both signing and verification increases slightly even if
the key size increases in the future;

(ix) To be able to be mounted on hardware with ease;

(x) The plaintext to signature expansion ratio is kept to a minimum.

One of our key strategy to obtain items (i) - (v) was by utilizing our defined Modular
Reduction Problem (MRP). It is defined in the following section.

1 KAZ-SIGN v1.2

3. MODULAR REDUCTION PROBLEM (MRP)

Let N = ∏
j
i=1 pi be a composite number and n = ℓ(N). Let pk be a factor of N. Choose

α ∈ (2n−1,N). Compute A ≡ α (mod pk).

The MRP is, upon given the values (A,N, pk), one is tasked to determine α ∈ (2n−1,N).

4. COMPLEXITY OF SOLVING THE MRP

Let npk = ℓ(pk) be the bit length of pk. The complexity to obtain α is O(2n−npk). When de-

ploying Grover’s algorithm on a quantum computer, the complexity to obtain α is O(2
n−npk

2).
In other words, if pk ≈ Nδ , for some δ ∈ (0,1), the complexity to obtain α is O(N1−δ).
When deploying Grover’s algorithm on a quantum computer, the complexity to obtain α is
O(N

1−δ

2).

5. THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001)

Fix p and u. Let Oα,g(x) be an oracle that upon input x computes the most u significant
bits of αgx (mod p). The task is to compute the hidden number α (mod p) in expected
polynomial time when one is given access to the oracle Oα,g(x). Clearly, one wishes to
solve the problem with as small u as possible. Boneh and Venkatesan (2001) demonstrated
that a bounded number of most significant bits of a shared secret are as hard to compute as
the entire secret itself.

The initial idea of introducing the HNP is to show that finding the u most significant bits of
the shared key in the Diffie-Hellman key exchange using users public key is equivalent to
computing the entire shared secret key itself.

6. THE HERMANN MAY REMARKS (Herrmann and May, 2008)

We will now observe two remarks by Herrmann and May. It discusses the ability and
inability to retrieve variables from a given modular multivariate linear equation. But before
that we will put forward a famous theorem of Minkowski that relates the length of the
shortest vector in a lattice to the determinant (see Hoffstein et al. (2008)).

Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

∥v∥ ≤
√

ω det(L)
1
ω

In lattices with fixed dimension we can efficiently find a shortest vector, but for arbitrary
dimensions, the problem of computing a shortest vector is known to be NP-hard under ran-

2 KAZ-SIGN v1.2

domized reductions (see Ajtai (1998)). The LLL algorithm, however, computes in polyno-
mial time an approximation of the shortest vector, which is sufficient for many applications.

Remark 1. Let f (x1,x2, . . . ,xk) = a1x1 + a2x2 + . . .+ akxk be a linear polynomial. One
can hope to solve the modular linear equation f (x1,x2, . . . ,xk)≡ 0 (mod N), that is to be
able to find the set of solutions (y1,y2, . . . ,yk) ∈ Zk

N , when the product of the unknowns are
smaller than the modulus. More precisely, let Xi be upper bounds such that |yi| ≤ Xi for
1, . . . ,k. Then one can roughly expect a unique solution whenever the condition ∏i Xi ≤ N
holds (see Herrmann and May (2008)). It is common knowledge that under the same
condition ∏i Xi ≤ N the unique solution (y1,y2, . . . ,yk) can heuristically be recovered by
computing the shortest vector in an k-dimensional lattice by the LLL algorithm. In fact,
this approach lies at the heart of many cryptographic results (see Bleichenbacher and May
(2006); Girault et al. (1990) and Nguyen (2004)).

We would like to provide the reader with the conjecture and remark given in Herrmann and
May (2008).

Conjecture 1. If in turn we have ∏i Xi ≥ N1+ε then the linear equation f (x1,x2, . . . ,xk) =

∑
k
i=1 aixi ≡ 0 (mod N) usually has Nε many solutions, which is exponential in the bit-size

of N.

Remark 2. From Conjecture 1, there is hardly a chance to find efficient algorithms that in
general improve on this bound, since one cannot even output all roots in polynomial time.

7. THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM

7.1 Background

This section discusses the construction of the KAZ-SIGN scheme. We provide information
regarding the key generation, signing and verification procedures. But first, we will put
forward functions that we will utilize and the system parameters for all users.

7.2 Utilized Functions

Let H(·) be a hash function. Let DLog(·) be the discrete anti-logarithm function. That is,
from gx ≡ β (mod N), upon given (β ,g,N) one computes x = DLogg(β (mod N)). Let
φ(·) be the usual Euler-totient function. Let ℓ(·) be the function that outputs the bit length
of a given input.

7.3 System Parameters

From the given security parameter k, determine parameter j. Next generate a list of the
first j-primes larger than 2, P = {pi} j

i=1. Let N = ∏
j
i=1 pi. As an example, if j = 43, N is

256-bits. Let n = ℓ(N) be the bit length of N. Choose a random prime in g ∈ ZN of order

3 KAZ-SIGN v1.2

Gg where at most Gg ≈ Nδ for a chosen value of δ ∈ (0,1) and δ → 0. That is, gGg ≡ 1
(mod N). Choose a random prime R ∈ Zφ(N) of order GR, where GR ≈ φ(N)ε for ε → 1.
That is, choose R with a large order in Zφ(N). Let nGR = ℓ(GR) be the bit length of GR.
Such R, has its own natural order in Zφ(Gg). Let that order be denoted as GRg. We can
observe the natural relation given by RGRg ≡ 1 (mod Gg) where φ(N) ≡ 0 (mod Gg) and
φ(Gg) ≡ 0 (mod GRg). Let nφ(Gg) = ℓ(φ(Gg)) be the bit length of φ(Gg). Let β be the
largest factor of GRg. The system parameters are (g,n,nφ(Gg),N,R,Gg,GRg,β).

7.4 KAZ-SIGN Algorithms

The full algorithms of KAZ-SIGN are shown in Algorithms 1, 2, and 3.

Algorithm 1 KAZ-SIGN Key Generation Algorithm

Input: System parameters (g,n,nφ(Gg),N,R,Gg,GRg,β), security parameter, k.
Output: Public verification key tuple, V = (V1,V2,V3), and private signing key, α

1: Choose random α ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
2: Compute public verification key – 1, V1 ≡ α (mod GRg).
3: Choose a random k-bit prime ρ , where k is the security parameter. The public verifica-

tion key – 2, is given by V2 = βρ .
4: Compute public verification key – 3, V3 ≡ α (mod V2).
5: Output public verification key tuple, V = (V1,V2,V3) and private signing key α .

Algorithm 2 KAZ-SIGN Signing Algorithm

Input: System parameters (g,n,nφ(Gg),N,R,Gg,GRg,β), private signing key, α , and mes-
sage to be signed, m ∈ ZN

Output: Signature tuple, S = (S1,S2,S3).
1: Compute the hash value of the message, h = H(m).
2: Choose random ephemeral prime r ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
3: Compute S1 ≡ Rr (mod GRg) (mod Gg).

4: Compute S2 ≡ (αr (mod V2)+h)r−1 (mod GRgV2).
5: Compute S3 ≡ r (mod V2).
6: Compute rF ≡ r (mod GRg).
7: Compute Chinese Remainder Theorem upon w4 ≡ (V S3

3 + h)S−1
3 (mod ρ) and w5 ≡

(V S3
1 +h)r−1

F (mod GRg) to obtain w6 (mod ρGRg).
8: Compute w7 = w6 −S2.
9: if w7 = 0 then

10: Repeat from Step 2
11: else Continue step 13
12: end if
13: Output signature tuple, S = (S1,S2,S3), and destroy r.

4 KAZ-SIGN v1.2

Steps 6, 7, 8, 9, 10, 11, and 12 during signing are known as the KAZ-SIGN parameter
suitability detection procedure.

Algorithm 3 KAZ-SIGN Verification Algorithm

Input: System parameters (g,n,nφ(Gg),N,R,Gg,GRg,β), public verification key tuple,
V = (V1,V2,V3), message, m, and, signature tuple, S = (S1,S2,S3).

Output: Accept or reject
1: Compute the hash value of the message to be verified, h = H(m).
2: Compute w0 ≡ (S2S3)−h (mod V2).
3: Compute w1 ≡V S3

3 (mod V2).
4: if w0 ̸= w1 then
5: Reject signature ⊥
6: else Continue step 8
7: end if
8: Compute rF = DLogRS1 (mod Gg).

9: Compute w2 ≡
(

GRg
β

)
S3 (mod GRg).

10: Compute w3 ≡
(

GRg
β

)
rF (mod GRg).

11: if w2 ̸= w3 then
12: Reject signature ⊥
13: else Continue step 15
14: end if
15: Compute Chinese Remainder Theorem upon w4 ≡ (V S3

3 + h)S−1
3 (mod ρ) and w5 ≡

(V S3
1 +h)r−1

F (mod GRg) to obtain w6 (mod ρGRg).
16: Compute w7 = w6 −S2.
17: if w7 = 0 then
18: Reject signature ⊥
19: else Continue step 21
20: end if
21: Compute y1 ≡ gSS2

1 (mod Gg) (mod N).
22: Compute z0 ≡ Rh (mod Gg).

23: Compute z1 ≡ RV
S3
1 (mod GRg) (mod Gg).

24: Compute y2 ≡ gz0z1 (mod N).
25: if y1 = y2 then
26: accept signature
27: else reject signature ⊥
28: end if

Steps 2, 3, 4, 5, 6, and 7 during verification are known as the KAZ-SIGN digital signature
forgery detection procedure type – 1, steps 8, 9, 10, 11, 12, 13 and 14 during verification
are known as the KAZ-SIGN digital signature forgery detection procedure type – 2, and

5 KAZ-SIGN v1.2

steps 15, 16, 17, 18, 19 and 20 during verification are known as the KAZ-SIGN digital
signature forgery detection procedure type – 3.

8. THE DESIGN RATIONALE

8.1 Proof of correctness (Verification steps 21, 22, 23, 24, 25, 26, 27 and 28)

We begin by discussing the rationale behind steps 21, 22, 23, 24, 25, 26, 27 and 28 with re-
lation to the verification process. Observe the following,

gSS2
1 ≡ gRr(αr (mod V2)+h)r−1

≡ gRr(V
S3
1 +h)r−1

≡ gR(V
S3
1 +h)

≡ gz0z1 (mod N).

As such the verification process does indeed provide an indication that the signature is
indeed from an authorized sender with the private signing key α .

8.2 Proof of correctness (Verification steps 2, 3, 4, 5, 6, and 7: KAZ-SIGN digital sig-
nature forgery detection procedure type – 1)

In order to comprehend the rationale behind steps 2, 3, 4, 5, 6, and 7, one has to observe
the following,

S2S3 −h ≡V S3
3 (mod V2).

Hence, w0 = w1.

8.3 Proof of correctness (Verification steps 8, 9, 10, 11, 12, 13 and 14: KAZ-SIGN
digital signature forgery detection procedure type – 2)

In order to comprehend the rationale behind steps 8, 9, 10, 11, 12, 13 and 14, one has to
observe the following;

From, GRg
β

V2 ≡ 0 (mod GRg), we have(
GRg

β

)
S3 ≡

(
GRg

β

)
r ≡

(
GRg

β

)
rF (mod GRg).

Hence, w2 = w3.

8.4 Proof of correctness (Verification steps 15, 16, 17, 18, 19 and 20: KAZ-SIGN
digital signature forgery detection procedure type – 3)

In order to comprehend the rationale behind steps 15, 16, 17, 18, 19 and 20, upon comput-
ing

w6 (mod ρGRg)

6 KAZ-SIGN v1.2

it is clear from S2 ≡ (αr (mod V2)+h)r−1 (mod GRgV2), one will obtain

w7 = w6 −S2 ̸= 0.

Moreover, KAZ-SIGN parameter suitability detection procedure has ensured a valid
signature will not produce w7 = 0.

8.5 Complexity of deriving forged signature tuple, (S1 f 1,S2 f 1,S3 f 1) – For the case of
random S3 f 1 ∈ ZV2 and gcd(S3 f 1,GRg) = 1

We have ρ = V2
β

. An adversary utilizing a random r0 computes the corresponding S1 f 1 ≡
Rr0 (mod GRg) (mod Gg), chooses a random k-bit S3 f 1 ∈ ZV2 where gcd(S3 f 1,GRg) = 1 and
then computes the following:

z1 ≡
(

V
S3 f 1
3 +h

)
S−1

3 f 1 (mod ρ)

z2 ≡
(

V
S3 f 1
1 +h

)
r−1

0 (mod GRg)

From the fact that gcd(ρ,GRg) = 1, the adversary will solve z1 and z2 using the Chinese
Remainder Theorem to obtain S2 f 1 (mod ρGRg).

Observe that

gS
S2 f 1
1 f 1 ≡ gR

r0

(
V

r0 (mod V2)
1 +h+GRgx

)
r−1
0

≡ gR
r0

(
V

S3 f 1
1 +h

)
r−1
0

≡ gR

(
V

S3 f 1
1 +h

)
≡ gz0z1 (mod N).

where z0 ≡ Rh (mod Gg) and z1 ≡ RV
S3 f 1
1 (mod GRg) (mod Gg).

But before verification steps 21, 22, 23, 24, 25, 26, 27 and 28 are conducted, the verifier
needs to execute verification steps 2 - 20.

For steps 2, 3, 4, 5, 6, and 7 we have:

S2 f 1S3 f 1 −h ̸≡V
S3 f 1
3 (mod V2).

This is due to the following angebraic reasoning:

S2 f 1 ≡ (V
S3 f 1
3 +h)S−1

3 f 1 (mod ρ)

S2 f 1 ≡ (V
S3 f 1
1 +h)r−1

0 (mod GRg)

which means
S2 f 1 = (V

S3 f 1
3 +h)(S−1

3 f 1)+ρt

7 KAZ-SIGN v1.2

for some t ∈ Z, which in turn implies

(V
S3 f 1
3 +h)(S−1

3 f 1)+ρt ≡ (V r0
1 +h)r−1

0 (mod GRg).

Solving for t, we obtain

t ≡
(
(V r0

1 +h)r−1
0 − (V

S3 f 1
3 +h)(S−1

3 f 1)
)(

ρ
−1) (mod GRg).

Note that,
(V r0

1 +h)r−1
0 − (V

S3 f 1
3 +h)(S−1

3 f 1) ̸≡ 0 (mod β)

due to the fact that
S3 f 1 ̸≡ r0 (mod β).

Upon substitution, we obtain

S2 f 1 = (V
S3 f 1
3 +h)(S−1

3 f 1)+ρt (mod ρGRg).

From the fact that
ρGRg ≡ 0 (mod V2),

we end up with the situation

S2 f 1 ̸≡ (V
S3 f 1
3 +h)(S−1

3 f 1) (mod V2).

Thus, we will obtain w0 ̸= w1 and hence satisfies the condition to reject the signature.The
above also holds for

S2 f 1 := S2 f 1 +GRgx (mod V2GRg)

for random x ∈ ZρGRg (including x = 0).

As a note we have the following relation,

S2 f 1S3 f 1 −h ≡V
S3 f 1
3 (mod ρ) (1)

However (1) is not part of the verification procedure.

For steps 8, 9, 10, 11, 12, 13 and 14, we have:(
GRg

β

)
S3 f 1 ̸≡

(
GRg

β

)
r0 ̸≡

(
GRg

β

)
r0F (mod GRg)

where r0F = DLogRS1 f 1 (mod GRg). Thus, we will obtain w2 ̸= w3 and hence satisfies the
condition to reject the signature.

8 KAZ-SIGN v1.2

For steps 15, 16, 17, 18, 19 and 20, if w6 := S2 f 1 was the result of the Chinese Remainder
Theorem upon z1 and z2, we will have

S2 f 1 ≡ w4 ≡ (V S3
3 +h)S−1

3 (mod ρ) and S2 f 1 ≡ w5 ≡ (V S3
1 +h)r−1

F (mod ρ).

Hence, steps 15, 16, 17, 18, 19 and 20 will output

w7 = w6 −S2 = 0.

Thus, satisfies the condition to reject the signature.

8.6 Complexity of deriving forged signature tuple, (S1 f 1,S2 f 1,S3 f 1) – For the case of
random S3 f 1 ≡ r (mod V2) and gcd(S3 f 1,GRg) = 1

We have ρ = V2
β

. An adversary utilizing a random r0 computes the corresponding S1 f 1 ≡
Rr0 (mod GRg) (mod Gg), sets S3 f 1 ≡ r0 (mod V2) where gcd(S3 f 1,GRg) = 1 and then com-
putes the following:

z1 ≡
(

V
S3 f 1
3 +h

)
S−1

3 f 1 (mod ρ)

z2 ≡
(

V
S3 f 1
1 +h

)
r−1

0 (mod GRg).

That is,

z1 ≡
(
V r0

3 +h
)

r−1
0 (mod ρ)

z2 ≡
(
V r0

1 +h
)

r−1
0 (mod GRg).

From the fact that gcd(ρ,GRg) = 1, the adversary will solve z1 and z2 using the Chinese
Remainder Theorem to obtain S2 f 1 (mod ρGRg).

Observe that

gS
S2 f 1
1 f 1 ≡ gR

r0

(
V

r0 (mod V2)
1 +h+GRgx

)
r−1
0

≡ gR
r0

(
V

S3 f 1
1 +h

)
r−1
0

≡ gR

(
V

S3 f 1
1 +h

)
≡ gz0z1 (mod N).

where z0 ≡ Rh (mod Gg) and z1 ≡ RV
S3 f 1
1 (mod GRg) (mod Gg).

But before verification steps 21, 22, 23, 24, 25, 26, 27 and 28 are conducted, the verifier
needs to execute verification steps 2 - 20.

For steps 2, 3, 4, 5, 6, and 7 we have:

S2 f 1S3 f 1 −h ≡V
S3 f 1
3 (mod V2)

9 KAZ-SIGN v1.2

This is due to the following algebraic reasoning:

Since S3 f 1 ≡ r0 (mod V2), we proceed to solve the following via CRT,

S2 f 1 ≡ (V r0
3 +h)r−1

0 (mod ρ)

S2 f 1 ≡ (V r0
1 +h)r−1

0 (mod GRg)

which means
S2 f 1 = (V r0

3 +h)(r−1
0)+ρt

for some t ∈ Z, which in turn implies

(V r0
3 +h)(r−1

0)+ρt ≡ (V r0
1 +h)r−1

0 (mod GRg).

Solving for t and doing the necessary substitution, we obtain

S2 f 1 = (V r0
3 +h)r−1

0 +ρt (mod ρGRg)

where

t ≡ (V r0
1 −V r0

3)r−1
0

(
1
ρ

)
(mod GRg)

≡ ((α −GRgt1)r0 − (α −βρt2)r0)r−1
0

(
1
ρ

)
(mod GRg)

≡ (β∆)r−1
0

(
1
ρ

)
(mod GRg)

for some t1, t2,∆ ∈ ZGRg .

That is, t ≡ 0 (mod β).

And from the fact that,
V2

β
GRg ≡ 0 (mod V2),

we end up with the situation

S2 f 1 ≡ (V r0
3 +h)(r−1

0) (mod V2).

and
S2 f 1S3 f 1 −h ≡V

S3 f 1
3 (mod V2)

Thus, w0 = w1 and hence does not satisfy the condition to reject the signature.

10 KAZ-SIGN v1.2

For steps 8, 9, 10, 11, 12, 13 and 14, we have:(
GRg

β

)
S3 f 1 ≡

(
GRg

β

)
r0 ≡

(
GRg

β

)
r0F (mod GRg)

where r0F = DLogRS1 f 1 (mod GRg). Thus, we will obtain w2 = w3 and hence does not
satisfy the condition to reject the signature.

For steps 15, 16, 17, 18, 19 and 20, if w6 := S2 f 1 was the result of the Chinese Remainder
Theorem upon z1 and z2, we will have

S2 f 1 ≡ w4 ≡ (V S3
3 +h)S−1

3 (mod ρ) and S2 f 1 ≡ w5 ≡ (V S3
1 +h)r−1

F (mod ρ).

Hence, steps 15, 16, 17, 18, 19 and 20 will output

w7 = w6 −S2 = 0.

Thus, satisfies the condition to reject the signature.

8.7 Complexity of deriving forged signature tuple, (S1 f 2,S2 f 2,S3 f 2)

Continuing the discussion, an adversary utilizing a random r0 computes the correspond-
ing S1 f 2 ≡ Rr0 (mod GRg) (mod Gg), S2 f 2 ≡ (V r0 (mod V2)

1 +h+GRgx)r−1 (mod GRgV2) and
S3 f 2 ≡ r0 (mod V2) for the hash value of a message m that the adversary wishes to forge a
signature upon it and a random x ∈ ZGRg , including x = 0. Observe that

gS
S2 f 2
1 f 2 ≡ gR

r0

(
V

r0 (mod V2)
1 +h+GRgx

)
r−1
0

≡ gR
r0

(
V

S3 f 2
1 +h

)
r−1
0

≡ gR

(
V

S3 f 2
1 +h

)
≡ gz0z1 (mod N).

But before verification steps 21, 22, 23, 24, 25, 26, 27 and 28 are conducted, the verifier
needs to execute verification steps 2, 3, 4, 5, 6, and 7.

Let S3 f 2 = r0 (mod V2). The verifier will obtain

S2 f 2S3 f 2 −h ≡V r0 (mod V2)
1 +GRgx ̸≡V

S3 f 2
3 (mod V2)

For the above equation to hold, the adversary needs to identify S3 f 2 satisfying

V
S3 f 2
3 −S2 f 2S3 f 2 +h ≡ 0 (mod V2)

Since,
S2 f 2 ≡

(
V

S3 f 2
1 +h+GRgx

)
S−1

3 f 2 (mod GRgV2)

11 KAZ-SIGN v1.2

This will imply,
V

S3 f 2
3 −

(
V

S3 f 2
1 +h+GRgx

)
+h ≡ 0 (mod V2)

V
S3 f 2
3 −V

S3 f 2
1 −GRgx ≡ 0 (mod V2) (2)

Then upon obtaining S3 f 2 we set

S1 f 2 ≡ RS3 f 2 (mod Gg)

We can then have

gS
S2 f 2
1 f 2 ≡ gR

S3 f 2

(
V

S3 f 2
1 +h+GRgx

)
S−1
3 f 2

≡ gR

(
V

S3 f 2
1 +h

)
≡ gz0z1 (mod N)

However, to solve equation (2), the complexity is O(V2). When deploying Grover‘s algo-

rithm on a quantum computer, the complexity will be O
(

V
1
2

2

)
. Furthermore, V2 contains

the factor ρ which is a k-bit prime number (where k is either 128 or 192 or 256 bits).
The adversary will not be able to execute the Chinese Remainder Theorem to reduce this
complexity.

8.8 Modular linear equation of S2.

Let GRg be the order of R in ZGg where RGRg ≡ 1 (mod Gg).

We continue this direction by obtaining rF ≡ (V r (mod V2)
1 +h)S−1

2 (mod GRg).

From the above, observe that one can analyze S2 as follows,

S2 ≡ (αr (mod V2)+h)r−1 ≡ (V1 +h)r−1
F (mod GRg)

which implies

rFα
r (mod V2)− (V1 +h)r+hrF ≡ 0 (mod GRg). (3)

Let α̂ be the upper bound for αr (mod V2) and r̂ be the upper bound for r. From Conjecture
1, if one has the situation where α̂ r̂ ≫ GRg, then there is no efficient algorithm to output
all the roots of equation (3). That is, equation (3) usually has GRg many solutions, which is
exponential in the bit-size of GRg.

To this end, since αr (mod V2) is exponentially large, it is clear to conclude that α̂ r̂ ≫ GRg.
This implies, there is no efficient algorithm to output all the roots of equation (3).

12 KAZ-SIGN v1.2

8.9 Implementation of the Hidden Number Problem

From S2 to obtain α or r, is the hidden number problem.

8.10 Another “Expensive” Problem Related To KAZ-SIGN: The Second Order Dis-
crete Logarithm Problem (2-DLP)

Let N be a composite number, g a random prime in ZN of order Gg where at most Gg ≈ Nδ

for δ ∈ (0,1) and δ → 0. That is, gGg ≡ 1 (mod N). Choose a random prime Q ∈ Zφ(N)

of order GQ, where GQ ≈ φ(N)ε for ε → 1. That is, choose Q with a large order in Zφ(N).
Such Q, has it own natural order in Zφ(Gg). Let that order be denoted as GQg. We can
observe the natural relation given by QGQg ≡ 1 (mod Gg) and φ(N)≡ 0 (mod Gg).

Then choose a random integer x ∈ Zφ(Gg) where x ≈ φ(Gg). Suppose from the relation
given by

gQx (mod φ(N)) ≡ A (mod N) (4)

one has solved the Discrete Logarithm Problem (DLP) upon equation (4) in polynomial
time on a classical computer and obtained the value X where Qx ̸≡ X (mod φ(N)) and
gX ≡ A (mod N), The relation Qx ̸≡ X (mod φ(N)) would result in the non-existence of
the discrete logarithm solution for Qx ≡ X (mod φ(N)).

The 2-DLP is, upon given the values (A,g,N,Q), one is tasked to determine x ∈ Zφ(Gg)

where x ≈ φ(Gg) such that equation (4) holds.

Let Qx ≡ T1 (mod φ(N). From the predetermined order of g ∈ ZN , during the process of
solving the DLP upon equation (4), a collision would occur prior to the full cycle of g. As
such, the process of solving the DLP upon equation (4) to obtain X ≈ Nδ would occur in
polynomial time on a classical computer. And since T1 < φ(N) and T1 ≈ N1, the relation
Qx ̸≡ X (mod φ(N)) will hold.

Furthering on the discussion, one has the relation gGg ≡ 1 (mod N). As such, from the
value X < Gg obtained from equation (4), one can construct the set of solutions given by
T0 = X +Ggt for t = 0,1,2,3, Now let Qx ≡ T1 (mod φ(N)). Following through,since
T1 is an element from the set of solutions, one can have the relation

tT1 =
T1 −X

Gg

Since Gg,X ≈ Nδ , and φ(N)≈ N, the complexity to obtain tT1 is O(N1−δ). When deploy-
ing Grover’s algorithm on a quantum computer, the complexity to obtain tT1 is O(N

1−δ

2).

13 KAZ-SIGN v1.2

To this end, note that if one proceeds to solve the DLP upon Qx ≡ X (mod Gg), one can
obtain the value x0 ≡ x (mod GQg). From the preceding sections, this is in fact the MRP.
It is easy to see that with correct choice of parameters (x,GQg), the complexity of 2-DLP
and MRP can be made the same. Hence, a more “non-expensive” method in discussing the
needs of the KAZ-SIGN is directly via the MRP.

9. KEY GENERATION, SIGNING AND VERIFICATION TIME COMPLEXITY

It is obvious that the time complexity for all three procedures is in polynomial time.

10. SPECIFICATION OF KAZ-SIGN

The following is the security specification for δ = 0.3.

Number of primes in P, j n = ℓ(N) Total security level, k
127 989 128
200 1713 192
257 2311 256

Table 1

11. IMPLEMENTATION AND PERFORMANCE

11.1 Key Generation, Signing and Verification Time Complexity

It is obvious that the time complexity for all three procedures is in polynomial time.

11.2 Parameter sizes

We provide here information on size of the key and signature based on security level infor-
mation from Table 1 (for δ = 0.3).

NIST
Security

Level

Number of
primes
in P, j

Security
level,

k

Length of
parameter
N (bits)

Public
key size,

(V1,V2,V3,N) (bits)

Private
key size,
α (bits)

Signature Size
(S1,S2,S3)

(bits)

ECC key
size

(bits)
1 127 128 989 ≈ 1350 ≈ 270 ≈ 620 256
3 200 192 1713 ≈ 2210 ≈ 390 ≈ 890 384
5 257 256 2311 ≈ 2980 ≈ 520 ≈ 1190 521

Table 2

In the direction of the research, we also make comparison to ECC key length for the three
NIST security levels. KAZ-SIGN key length did not achieve its immediate target of having

14 KAZ-SIGN v1.2

approximately the same key length as ECC, but further research might find means and
ways.

11.3 Key Generation, Signing and Verification Ease of Implementation

The algebraic structure of KAZ-SIGN has an abundance of programming libraries available
to be utilized. Among them are:

1. GNU Multiple Precision Arithmetic Library (GMP); and

2. Standard C libraries.

11.4 Key Generation, Signing and Verification Empirical Performance Data

In order to obtain benchmarks, we evaluate our reference implementation on a machine us-
ing GCC Compiler Version 6.3.0 (MinGW.org GCC-6.3.0-1) on Windows 10 Pro, Intel(R)
Core(TM) i7-4710HQ CPU @ 2.50GHz and 8.00 GB RAM (64-bit operating system, x64-
based processor).

We have the following empirical results when conducting 100 key generations, 100 sign-
ings and 100 verifications:

Time (ms)
Security level

Key generation Signing Verification
128 - KAZ989 238 280 163
192 - KAZ1713 244 526 375
256 - KAZ2311 277 1063 910

Table 3

12. ADVANTAGES AND LIMITATIONS

As we have seen, KAZ-SIGN can be evaluated through:

1. Key length

2. Speed

3. No verification failure

12.1 Key Length

KAZ-SIGN key length is comparable to non-post quantum algorithms such as ECC and
RSA. For 256-bit security, the KAZ-SIGN key size is 2311-bits. ECC would use 521-bit
keys and RSA would use 15360-bit keys.

15 KAZ-SIGN v1.2

12.2 Speed

KAZ-SIGN’s speed analysis results stem from the fact that it has short key length to achieve
256-bit security plus its textbook complexity running time for both signing and verifying
is O(n3) where parameter n here is the input length.

12.3 No verification failure

It is apparent that the execution of KAZ-SIGN parameter suitability detection proce-
dure together with KAZ-SIGN digital signature forgery detection procedure type – 1,
type – 2, and type – 3 within the verification procedure will enable the verification com-
putational process by the recipient to verify or reject a digital signature that was received
by the recipient with probability equal to 1. That is, the probability of verification failure
is 0.

12.4 Limitation

As we have seen, limitation of KAZ-SIGN can be evaluated through:

1. Based on unknown problem, the Modular Reduction Problem (MRP)

12.4.1 Based on unknown problem, the Modular Reduction Problem (MRP)

The MRP is not a known hard mathematical problem which is quantum resistant and is sub-
ject to future cryptanalysis success in solving the defined challenge either with a classical
or quantum computer.

13. CLOSING REMARKS

The KAZ-SIGN digital signature exhibits properties that might result in it being a desirable
post quantum signature scheme. In the event that new forgery methodologies are found, as
long as the procedure can also be done by the verifier, then one can add the new forgery
methodology into the verification procedure. At the same time, the same forgery methodol-
ogy can be inserted into the signing procedure in order to eliminate any chances the signer
will produce a signature that will be rejected.

To this end, the security of the MRP is an unknown fact. We opine that, the acceptance of
MRP as a potential quantum resistant hard mathematical problem will come hand in hand
with a secure cryptosystem designed upon it. We welcome all comments on the KAZ-
SIGN digital signature, either findings that nullify its suitability as a post quantum digital
signature scheme or findings that could enhance its deployment and use case in the future.

16 KAZ-SIGN v1.2

Finally, we would like to put forward our heartfelt thanks to Prof. Dr. Abderrahmane
Nitaj from Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse Nor-
mandie, France for insights, comments, and friendship throughout the process.

17 KAZ-SIGN v1.2

14. ILLUSTRATIVE FULL SIZE TEST VECTORS – 1

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 127. That is, P = {3,5,7, . . . ,719}. We provide a valid
KAZ-SIGN signature tuple S = (S1,S2,S3) and two types of forged KAZ-SIGN signature
tuple S = (S1 f 1,S2 f 1,S3 f 1) and S = (S1,S2 f 2,S3).

N :
49620530728628930118156860850549439958576619344146543932695595611002684
68433879052996996579124346821800802464304723640429503137601278290422409
95527312709676289355510007021292609214718910488137446101810018769075119
88095470840869628401364260569885219872313936630092234781649521258974640

44412149392265 ≈ 2989

g :
37920959257050481801877268007820321559153631139464530850394494027376968
31381307646578422599137337997987536804167062476101209355561530828643855
48033374432889086914152478748355345570660694903785310864264219562385388
66792628200344453333091519326450866539834082546479197565248779861692802
11550967441529

Gg :
63005867136934016060048271905065655756044061495412139373962648794956385

28941024000 ≈ 2272 ≈ 20.275(989) ≈ N0.3

R :
713206001856918918690182577320611894139047803582796412383918512134658852
406679143629516090411185110233302723295119632067831315317917844556902288
772698398235864225536018956230377314019768259027323615151761787263863944
858128592122228870249761848708840263638416125194479107341024351702968758
449937061

GRg :

15185584726452738974376000 ≈ 284 ≈ N0.085

18 KAZ-SIGN v1.2

α :
45290429716829379746296505694933129225419090680920622100184001421395736

2551591767 ≈ 2268

V1 :
1870886870157947578455767

V2 :
35051730803813663203845046850084741897729

= (393839671952962507908371312922300470761)(89)≈ 2128+7 = 2135

V3 :
23862478816794184497757308785904917894286

tαV1 =
α −V1

GRg
:

29824620212309039636574251396627789879331358164404614386 ≈ 2185

tαV3 =
α −V3

V2
:

12921025204239482493275410848364042252489 ≈ 2134

h :
10211820011523695752761871804176322790386441296810469112025276239974531
2594006

r :
30281625540597381803964977244394238087653922755783998246130609994343646
2287626427

S1 :
20314714054396510922865975577046806328681527870302500627580290033311337
06478644221

19 KAZ-SIGN v1.2

S2 :
348200403871761959820595478816884359752686314408086214800793156007

S3 :
899728926510320300276504075753721623351

w0 for valid signature (S1,S2,S3) :
18943858193004181626902390111921431636498

w1 for valid signature (S1,S2,S3) :
18943858193004181626902390111921431636498

rF for valid signature (S1,S2,S3) :
9937863686364051359338427

w2 for valid signature (S1,S2,S3) :
1706245474882330221840000

w3 for valid signature (S1,S2,S3) :
1706245474882330221840000

w6 for valid signature (S1,S2,S3) :
1320632861118211878425713780793542048149618522269662060025268007

w7 = w6 −S2 :
−346879771010643747942169765036090817704536695885816552740767888000

y1 and y2 for (S1,S2,S3) :
41058722589427850584694259439767533072689395493237883057541508290758119
87832342162081472813030264768874460261077564008716849318312160461927010
26261984639909740741566621197121455132723305637427546532291072689489379
51429332671598609370166562814389819981109925205777287125827763868662156
96928065903204

20 KAZ-SIGN v1.2

15. ILLUSTRATIVE FULL SIZE TEST VECTORS – 2

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 127. That is, P= {3,5,7, . . . ,719}. We provide here a forged
KAZ-SIGN signature tuple S = (S1 f 1,S2 f 1,S3 f 1) for the case where S3 f 1 ≡ r0 (mod V2).

r0 :
36848086515502374510356024641985617894101287869942957813611949337390505
5371550551

S1 f 1 :
29262830137860333122986254255432246368143368821285949894239321044350730
61372778061

S2 f 1 :
2633622113187822484456675070340549130480662557839585121561974859

S3 f 1 :
29589512199279852817850592903884428838279

w0 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
20251986632392909084649657307905739602273

w1 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
20251986632392909084649657307905739602273

rF for forged signature (S1 f 1,S2 f 1,S3 f 1) :
9397787111612148048110551

w2 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
2900617307299961377128000

w3 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
2900617307299961377128000

21 KAZ-SIGN v1.2

w6 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
2633622113187822484456675070340549130480662557839585121561974859

w7 = w6 −S2 : 0

y1 and y2 for (S1 f 1,S2 f 1,S3 f 1) :
48549625150966063887887625409276520145873166315545951303524420440236037
68527676157130338698974355770893047761261918454855379934435962382168546
28713105994348785696296363988073363030916431638638469202704615101865385
55118164449943896095542360245949634102602800042034026788666829022116185
44563930783034

22 KAZ-SIGN v1.2

16. ILLUSTRATIVE FULL SIZE TEST VECTORS – 3

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 127. That is, P= {3,5,7, . . . ,719}. We provide here a forged
KAZ-SIGN signature tuple S = (S1 f 1,S2 f 1,S3 f 1) for the case where S3 f 1 ∈ ZV2 is chosen
randomly.

r0 :
36848086515502374510356024641985617894101287869942957813611949337390505
5371550551

S1 f 1 :
29262830137860333122986254255432246368143368821285949894239321044350730
61372778061

S2 f 1 :
4586383035861356540086585811090320752811133462616987391874676443

S3 f 1 :
484482419480347199371882349267932668353

w0 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
32663622426448784578397119051119938565605

w1 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
6276364405600296548536241085325807024618

rF for forged signature (S1 f 1,S2 f 1,S3 f 1) :
9397787111612148048110551

w2 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
11431844681711612486328000

w3 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
2900617307299961377128000

23 KAZ-SIGN v1.2

w6 for forged signature (S1 f 1,S2 f 1,S3 f 1) is not needed to be calculated.

w7 = w6 −S2 is not needed to be calculated.

y1 and y2 for (S1 f 1,S2 f 1,S3 f 1) :
13360716428061354371171789331762285565040403498117293505226688878770639
52712518695106112708762065281737397682377451306216179802174750771608381
49829870773740344780530557429955268022871642745290422578973438351563162
55088056058049963356840656598595505541095999763234971611942657825917251
4774016544859

24 KAZ-SIGN v1.2

17. ILLUSTRATIVE FULL SIZE TEST VECTORS – 4

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 127. That is, P= {3,5,7, . . . ,719}. We provide here a forged
KAZ-SIGN signature tuple S = (S1 f 1,S2 f 1,S3 f 1) for the case where S3 f 1 ≡ r0 (mod V2) is
chosen randomly and S2 f 1 := S2 f 1 +GRgx (mod V2GRg).

r0 :
36848086515502374510356024641985617894101287869942957813611949337390505
5371550551

S1 f 1 :
29262830137860333122986254255432246368143368821285949894239321044350730
61372778061

x :
691604549986101413229541331013615291236888067504485367306676281251204031
11047

S2 f 1 :
71419315504439264635380276012705112565924963819236972853192244443

S3 f 1 :
484482419480347199371882349267932668353

w0 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
23000441233897682825011334691995890604567

w1 for forged signature (S1 f 1,S2 f 1,S3 f 1) :
6276364405600296548536241085325807024618

rF for forged signature (S1 f 1,S2 f 1,S3 f 1) is not needed to be calculated.

w2 for forged signature (S1 f 1,S2 f 1,S3 f 1) is not needed to be calculated.

w3 for forged signature (S1 f 1,S2 f 1,S3 f 1) is not needed to be calculated.

25 KAZ-SIGN v1.2

w6 for forged signature (S1 f 1,S2 f 1,S3 f 1) is not needed to be calculated.

w7 = w6 −S2 is not needed to be calculated.

y1 and y2 for (S1 f 1,S2 f 1,S3 f 1) :
13360716428061354371171789331762285565040403498117293505226688878770639
52712518695106112708762065281737397682377451306216179802174750771608381
49829870773740344780530557429955268022871642745290422578973438351563162
55088056058049963356840656598595505541095999763234971611942657825917251
4774016544859

26 KAZ-SIGN v1.2

18. ILLUSTRATIVE FULL SIZE TEST VECTORS – 5

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 127. That is, P= {3,5,7, . . . ,719}. We provide here a forged
KAZ-SIGN signature tuple S = (S1,S2 f 2,S3) which utilizes (S1,S3) from test vectors – 1
and a forged S2 denoted as S2 f 2.

S1 :
20314714054396510922865975577046806328681527870302500627580290033311337
06478644221

x :
719818455010636061792171409690685073328478410217474322320282365846408880
490411359123292938200817151737436052650841618882198828046092519150339971
67715191406773167

S2 f 2 :
394407130394973462889758868570984590683930905807407593727983436007

S3 :
899728926510320300276504075753721623351

w0 for forged signature (S1,S2 f 2,S3) :
23955945495202554512999649480419416067295

w1 for forged signature (S1,S2 f 2,S3) :
18943858193004181626902390111921431636498

rF for forged signature (S1,S2 f 2,S3) is not needed to be calculated.

w2 for forged signature (S1,S2 f 2,S3) is not needed to be calculated.

w3 for forged signature (S1,S2 f 2,S3) is not needed to be calculated.

27 KAZ-SIGN v1.2

w6 for forged signature (S1,S2 f 2,S3) is not needed to be calculated.

w7 = w6 −S2 is not needed to be calculated.

y1 and y2 for (S1,S2 f 2,S3) :
41058722589427850584694259439767533072689395493237883057541508290758119
87832342162081472813030264768874460261077564008716849318312160461927010
26261984639909740741566621197121455132723305637427546532291072689489379
51429332671598609370166562814389819981109925205777287125827763868662156
96928065903204

28 KAZ-SIGN v1.2

References

Ajtai, M. (1998). The shortest vector problem in L2 is NP-hard for randomized reductions.
In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pages
10–19.

Bleichenbacher, D. and May, A. (2006). New attacks on RSA with small secret CRT-
exponents. In Public Key Cryptography-PKC 2006: 9th International Conference on
Theory and Practice in Public-Key Cryptography, New York, NY, USA, April 24-26,
2006. Proceedings 9, pages 1–13. Springer.

Boneh, D. and Venkatesan, R. (2001). Hardness of computing the most significant bits
of secret keys in Diffie-Hellman and related schemes. In Advances in Cryptology-
CRYPTO’96: 16th Annual International Cryptology Conference Santa Barbara, Cali-
fornia, USA August 18–22, 1996 Proceedings, pages 129–142. Springer.

Girault, M., Toffin, P., and Vallée, B. (1990). Computation of approximate L-th roots
modulo n and application to cryptography. In Advances in Cryptology—CRYPTO’88:
Proceedings 8, pages 100–117. Springer.

Herrmann, M. and May, A. (2008). Solving linear equations modulo divisors: On factoring
given any bits. In Advances in Cryptology-ASIACRYPT 2008: 14th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Melbourne,
Australia, December 7-11, 2008. Proceedings 14, pages 406–424. Springer.

Hoffstein, J., Pipher, J., Silverman, J. H., and Silverman, J. H. (2008). An introduction to
mathematical cryptography, volume 1. Springer.

Nguyen, P. Q. (2004). Can we trust cryptographic software? Cryptographic flaws in GNU
Privacy Guard v1. 2.3. In Advances in Cryptology-EUROCRYPT 2004: International
Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004. Proceedings 23, pages 555–570. Springer.

29 KAZ-SIGN v1.2

