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1. INTRODUCTION

The proposed KAZ Digital Signature scheme, KAZ-SIGN (in Malay Kriptografi Atasi
Zarah - translated literally “cryptographic techniques overcoming particles”; particles here
referring to the photons) is built upon the hard mathematical problem coined as the Mod-
ular Reduction Problem (MRP). The idea revolves around the difficulty of reconstructing
an unknown parameter from a given modular reducted value of that parameter. The target
of the KAZ-SIGN design is to be a quantum resistant digital signature candidate with short
verification keys and signatures, verifying correctly approximately 100% of the time, based
on simple mathematics, having fast execution time and a potential candidate for seamless
drop-in replacement in current cryptographic software and hardware ecosystems.

2. THE DESIGN IDEALISME

(i) To be based upon a problem that could be proven analytically to require exponential
time to be solved;

(ii) To be able to prove analytically that the cryptosystem is indeed resistant towards
quantum computers;

(iii) To utilize problems mentioned in point (i) above in its full spectrum without having
to induce “weaknesses” in order for a trapdoor to be constructed;

(iv) To use “simple” mathematics in order to achieve maximum simplicity in design,
such that even practitioners with limited mathematical background will be able to
understand the arithmetic;

(v) Achieve 128 and 256-bit security with key length roughly equivalent to the non-
quantum secure Elliptic Curve Cryptosystem (ECC);

(vi) To achieve maximum speed upon having simplicity in design and short key length;

(vii) To have a sufficiently large signature space;

(viii) The computation overhead for both signing and verification increases slightly even if
the key size increases in the future;

(ix) To be able to be mounted on hardware with ease;

(x) The plaintext to signature expansion ratio is kept to a minimum.

One of our key strategy to obtain items (i) - (v) was by utilizing our defined Modular
Reduction Problem (MRP). It is defined in the following section.
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3. MODULAR REDUCTION PROBLEM (MRP)

Let N = ∏
j
i=1 pi be a composite number and n = ℓ(N). Let pk be a factor of N. Choose

α ∈ (2n−1,N). Compute A ≡ α (mod pk).

The MRP is, upon given the values (A,N, pk), one is tasked to determine α ∈ (2n−1,N).

4. COMPLEXITY OF SOLVING THE MRP

Let npk = ℓ(pk) be the bit length of pk. The complexity to obtain α is O(2n−npk ). When de-

ploying Grover’s algorithm on a quantum computer, the complexity to obtain α is O(2
n−npk

2 ).
In other words, if pk ≈ Nδ , for some δ ∈ (0,1), the complexity to obtain α is O(N1−δ ).
When deploying Grover’s algorithm on a quantum computer, the complexity to obtain α is
O(N

1−δ

2 ).

5. THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001)

Fix p and u. Let Oα,g(x) be an oracle that upon input x computes the most u significant
bits of αgx (mod p). The task is to compute the hidden number α (mod p) in expected
polynomial time when one is given access to the oracle Oα,g(x). Clearly, one wishes to
solve the problem with as small u as possible. Boneh and Venkatesan (2001) demonstrated
that a bounded number of most significant bits of a shared secret are as hard to compute as
the entire secret itself.

The initial idea of introducing the HNP is to show that finding the u most significant bits of
the shared key in the Diffie-Hellman key exchange using users public key is equivalent to
computing the entire shared secret key itself.

6. THE HERMANN MAY REMARKS (Herrmann and May, 2008)

We will now observe two remarks by Herrmann and May. It discusses the ability and
inability to retrieve variables from a given modular multivariate linear equation. But before
that we will put forward a famous theorem of Minkowski that relates the length of the
shortest vector in a lattice to the determinant (see Hoffstein et al. (2008)).

Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

∥v∥ ≤
√

ω det(L)
1
ω

In lattices with fixed dimension we can efficiently find a shortest vector, but for arbitrary
dimensions, the problem of computing a shortest vector is known to be NP-hard under ran-
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domized reductions (see Ajtai (1998)). The LLL algorithm, however, computes in polyno-
mial time an approximation of the shortest vector, which is sufficient for many applications.

Remark 1. Let f (x1,x2, . . . ,xk) = a1x1 + a2x2 + . . .+ akxk be a linear polynomial. One
can hope to solve the modular linear equation f (x1,x2, . . . ,xk)≡ 0 (mod N), that is to be
able to find the set of solutions (y1,y2, . . . ,yk) ∈ Zk

N , when the product of the unknowns are
smaller than the modulus. More precisely, let Xi be upper bounds such that |yi| ≤ Xi for
1, . . . ,k. Then one can roughly expect a unique solution whenever the condition ∏i Xi ≤ N
holds (see Herrmann and May (2008)). It is common knowledge that under the same
condition ∏i Xi ≤ N the unique solution (y1,y2, . . . ,yk) can heuristically be recovered by
computing the shortest vector in an k-dimensional lattice by the LLL algorithm. In fact,
this approach lies at the heart of many cryptographic results (see Bleichenbacher and May
(2006); Girault et al. (1990) and Nguyen (2004)).

We would like to provide the reader with the conjecture and remark given in Herrmann and
May (2008).

Conjecture 1. If in turn we have ∏i Xi ≥ N1+ε then the linear equation f (x1,x2, . . . ,xk) =

∑
k
i=1 aixi ≡ 0 (mod N) usually has Nε many solutions, which is exponential in the bit-size

of N.

Remark 2. From Conjecture 1, there is hardly a chance to find efficient algorithms that in
general improve on this bound, since one cannot even output all roots in polynomial time.

7. THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM

7.1 Background

This section discusses the construction of the KAZ-SIGN scheme. We provide information
regarding the key generation, signing and verification procedures. But first, we will put
forward functions that we will utilize and the system parameters for all users.

7.2 Utilized Functions

Let H(·) be a hash function. Let φ(·) be the usual Euler-totient function. Let ℓ(·) be the
function that outputs the bit length of a given input.

7.3 System Parameters

From the given security parameter k, determine parameter j. Next generate a list of the
first j-primes larger than 2, P = {pi} j

i=1. Let N = ∏
j
i=1 pi. As an example, if j = 43, N

is 256-bits. Let n = ℓ(N) be the bit length of N. Choose a random prime in g ∈ ZN of
order Gg where at most Gg ≈ Nδ for a chosen value of δ ∈ (0,1) and δ → 0. That is,
gGg ≡ 1 (mod N). Choose a random prime R ∈ Zφ(N) of order GR, where GR ≈ φ(N)ε
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for ε → 1. That is, choose R with a large order in Zφ(N). Let nGR = ℓ(GR) be the bit
length of GR. Such R, has its own natural order in Zφ(Gg). Let that order be denoted as
GRg. We can observe the natural relation given by RGRg ≡ 1 (mod Gg) where φ(N) ≡ 0
(mod Gg) and φ(Gg) ≡ 0 (mod GRg). Let nφ(Gg) = ℓ(φ(Gg)) be the bit length of φ(Gg)
and nφ(GRg) = ℓ(φ(GRg)) be the bit length of φ(GRg). Let q be a random k-bit prime where
φ(q2) = q(q− 1) = qq0Q, where Q is a prime, q0 = 2β 2 and β is a suitable prime. The
system parameters are (β ,g,k,q,N,R,Gg,GRg,n,nφ(Gg)).

7.4 KAZ-SIGN Algorithms

The full algorithms of KAZ-SIGN are shown in Algorithms 1, 2, and 3.

Algorithm 1 KAZ-SIGN Key Generation Algorithm

Input: System parameters (β ,g,k,q,N,R,Gg,GRg,n,nφ(Gg)).
Output: Public verification key pair, V = (V1,V2), and private signing key, α

1: Choose random α ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
2: Compute public verification key, V1 ≡ α (mod GRgq).
3: Compute public verification key, V2 = H(αq0 (mod q2)).
4: Output public verification key pair, V = (V1,V2) and private signing key α .

Algorithm 2 KAZ-SIGN Signing Algorithm

Input: System parameters (β ,g,k,q,N,R,Gg,GRg,n,nφ(Gg)), private signing key, α , and
message to be signed, m ∈ ZN

Output: Signature pair, S = (S1,S2).
1: Compute the hash value of the message, h = H(m).
2: Choose random prime r0 ∈ (2nφ(Gg)−2,2nφ(Gg)−1) and set r = β r0.
3: Compute S1 ≡ r (mod GRgq2).
4: Compute GS1 = gcd(r,GRg).

5: if gcd( r
GS1

,GRgq2) ̸= 1 or gcd( S1
GS1

,GRgq2) ̸= 1 or S1 ̸≡ 0 (mod β ) or gcd(S1,
φ(q2)

β 2 ) ̸= 1
then

6: Repeat from Step 2.
7: end if
8: Compute S2 ≡ GS1(α

S1 +h)r−1 (mod GRgq2).
9: Output signature pair, S = (S1,S2), and destroy r.
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Algorithm 3 KAZ-SIGN Verification Algorithm

Input: System parameters (β ,g,k,q,N,R,Gg,GRg,n,nφ(Gg)), public verification key pair,
V = (V1,V2), message, m, and, signature pair, S = (S1,S2).

Output: Accept or reject
1: Compute the hash value of the message to be verified, h = H(m).
2: Compute GS1r = gcd(S1,GRg).
3: Compute αF ≡V1 (mod GRg).
4: Compute w0 ≡ GS1r(V

S1
1 +h)S−1

1 (mod GRgq2).
5: Compute w1 = w0 −S2.
6: if w1 = 0 then
7: Reject signature ⊥
8: else Continue step 10
9: end if

10: Compute w2 ≡ GS1r(α
S1
F +h)S−1

1 (mod GRgq2).
11: Compute w3 = w2 −S2.
12: if w3 = 0 then
13: Reject signature ⊥
14: else Continue step 16
15: end if
16: Compute w4 ≡ S1S2 −GS1rh (mod q)
17: Compute w5 ≡ GS1rV

S1
1 (mod q)

18: Compute w6 = w4 −w5
19: if w6 ̸= 0 then
20: Reject signature ⊥
21: else Continue step 23
22: end if
23: Compute w7 = S−1

1 (mod
(

φ(q2)
β 2

)
).

24: Compute w80 ≡
(
(S1S2 −GS1rh)(GS1r)

−1)q0w7 (mod q2) and w8 = H(w80).
25: Compute w9 = w8 −V2.
26: if w9 ̸= 0 then
27: Reject signature ⊥
28: else Continue step 30
29: end if
30: Compute z0 ≡ RS1S2 (mod Gg).
31: Compute y1 ≡ gz0 (mod N).

32: Compute z1 ≡ RGS1r(V
S1
1 +h) (mod GRg) (mod Gg).

33: Compute y2 ≡ gz1 (mod N).
34: if y1 = y2 then
35: accept signature
36: else reject signature ⊥
37: end if
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Steps 4, 5, 6, 7, 8, and 9 during verification are known as the KAZ-SIGN digital signature
forgery detection procedure type – 1, steps 10, 11, 12, 13, 14 and 15 during verification
are known as the KAZ-SIGN digital signature forgery detection procedure type – 2,
steps 16, 17, 18, 19, 20, 21, and 22 during verification are known as the KAZ-SIGN
digital signature forgery detection procedure type – 3, and steps 23, 24, 25, 26, 27, 28,
and 29 are known as the KAZ-SIGN digital signature forgery detection procedure type
– 4.

8. THE DESIGN RATIONALE

8.1 Proof of correctness (Verification steps 30, 31, 32, 33, 34, 35, 36 and 37)

We begin by discussing the rationale behind steps 30, 31, 32, 33, 34, 35, 36 and 37 with re-
lation to the verification process. Observe the following,

gz0 ≡ gRS1S2 ≡ gRrGS1r(α
S1+h)(r)−1

≡ gRGS1r(V
S1
1 +h)

≡ gz1 (mod N).

because α ≡V1 (mod GRg). As such the verification process does indeed provide an indi-
cation that the signature is indeed from an authorized sender with the private signing key
α .

8.2 Proof of correctness (Verification steps 4, 5, 6, 7, 8, and 9: KAZ-SIGN digital
signature forgery detection procedure type – 1)

In order to comprehend the rationale behind steps 4, 5, 6, 7, 8, and 9, one has to observe
the following,

w0 ≡ GS1r(V
S1
1 +h)S−1

1 ̸≡ GS1r(α
S1 +h)S−1

1 (mod GRgq2)

because α ̸≡V1 (mod GRgq2). Hence, w1 ̸= 0.

8.3 Proof of correctness (Verification steps 10, 11, 12, 13, 14 and 15: KAZ-SIGN
digital signature forgery detection procedure type – 2)

In order to comprehend the rationale behind steps 10, 11, 12, 13, 14 and 15, one has to
observe the following;

w2 ≡ GS1r(α
S1
F +h)S−1

1 ̸≡ GS1r(α
S1 +h)S−1

1 (mod GRgq2).

because α ̸≡ αF (mod GRgq2) where αF ≡V1 (mod GRg). Hence, w3 ̸= 0.
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8.4 Proof of correctness (Verification steps 16, 17, 18, 19, 20, 21, and 22: KAZ-SIGN
digital signature forgery detection procedure type – 3)

In order to comprehend the rationale behind steps 16, 17, 18, 19, 20, 21, and 22, one has to
observe

S1S2 −GS1rh ≡ GS1rV
S1
1 (mod q)

because α ≡V1 (mod q). Hence, w6 = 0.

8.5 Proof of correctness (Verification steps 23, 24, 25, 26, 27, 28, and 29 : KAZ-SIGN
digital signature forgery detection procedure type – 4)

In order to comprehend the rationale behind steps 23, 24, 25, 26, 27, 28, and 29, one has to
observe

w80 ≡
(
(S1S2 −GS1rh)(GS1r)

−1)q0w7 ≡ (αS1)q0w7 ≡ α
q0 (mod q2).

because S1q0w7 ≡ q0 (mod φ(q2)). By computing w8 = H(w80), we finally have w9 = 0.

8.6 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 1 and KAZ-SIGN digital signature forgery detection
procedure type – 2.

An adversary utilizing a random r0 computes the corresponding parameter pair given by
(S1 (mod GRgq2),GS1r). Next, the adversary could compute either one of the following:

1. S2 ≡ GS1r(V
S1
1 +h)S−1

1 (mod GRgq2); or

2. S2 ≡ GS1r(α
S1
F +h)S−1

1 (mod GRgq2)

Since α ≡V1 ≡ αF (mod GRg), the forged signature pair will pass steps 30, 31, 32, 33, 34,
35, 36 and 37. However, the signature pair will fail KAZ-SIGN digital signature forgery
detection procedure type – 1 or KAZ-SIGN digital signature forgery detection procedure
type – 2.

8.7 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 3

An adversary utilizing a random r0 computes the corresponding parameter pair given by
(S1 (mod GRgq2),GS1r). Next, with a random x ∈ ZGRgq2 and random unknown prime
ρ ≈ q, the adversary could compute either one of the following:

i) S2 ≡ GS1r(V
S1
1 +h+GRgx)S−1

1 (mod GRgq2); or

7 KAZ-SIGN v1.4



ii) S2 ≡ GS1r(V
S1
1 +h+GRgx)S−1

1 (mod GRgρq); or

iii) S2 ≡ GS1r(α
S1
F +h+GRgx)S−1

1 (mod GRgq2); or

iv) S2 ≡ GS1r(α
S1
F +h+GRgx)S−1

1 (mod GRgρq).

The forged signature pair will not be able to be detected by either the KAZ-SIGN digi-
tal signature forgery detection procedure type – 1 or KAZ-SIGN digital signature forgery
detection procedure type – 2. It will also pass steps 30, 31, 32, 33, 34, 35, 36 and 37. How-
ever, the signature pair will fail KAZ-SIGN digital signature forgery detection procedure
type – 3. This is because, one would obtain either:

i) S1S2 −GS1rh ≡ GS1r(V
S1
1 +GRgx) ̸≡ GS1rV

S1
1 (mod q); or

ii) S1S2 −GS1rh ≡ GS1r(α
S1
F +GRgx) ̸≡ GS1rV

S1
1 (mod q).

As a note, the corresponding parameter S1 could also be modulo GRgρq. Nevertheless, the
above output will remain.

An alternative for the adversary would be to derive the corresponding S1 modulo GRgq2 by
solving the following relation:

S1S2 −GS1rh ≡ GS1rV
S1
1 (mod GRgq2) (1)

However, to solve equation (1), the complexity is is O(q). When deploying Grover’s al-
gorithm on a quantum computer, the complexity will be O(q0.5). Furthermore q is a k-bit
prime number (where k is either 128 or 192 or 256 bits). The adversary will not be able to
execute the Chinese Remainder Theorem to reduce this complexity.

8.8 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 4

An adversary utilizing a random r0 and random unknown prime ρ ≈ q computes the corre-
sponding parameter pair (S1 (mod GRgρq),GS1r). Next, the adversary could compute the
following:

S2 ≡ GS1r(V
S1
1 +h)S−1

1 (mod GRgρq)

The forged signature pair will not be able to be detected by either the KAZ-SIGN digital
signature forgery detection procedure type – 1 or KAZ-SIGN digital signature forgery de-
tection procedure type – 2 or KAZ-SIGN digital signature forgery detection procedure type
– 3. It will also pass steps 30, 31, 32, 33, 34, 35, 36 and 37. However, the signature pair
will fail KAZ-SIGN digital signature forgery detection procedure type – 4. This is because
of the different groups ZGRgρq and ZGRgq2 .
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Note that, by replacing V1 with αF for the above forgery strategy in this section, the forged
signature will not pass KAZ-SIGN digital signature forgery detection procedure type – 3.
This is because αF ̸≡V1 (mod q).

8.9 Extracting α (mod GRgq2) from S2.

Observe that,
z1 ≡ S1S2 −GS1rh ≡ GS1rα

S1 (mod GRgq2).

Since GRg ≡ 0 (mod GS1r), we can have

z2 ≡ z1GS−1
1r ≡ α

S1 (mod GRg2q2) (2)

where GRg2 =GRgGS−1
1r . However, gcd(S1,φ(GRg2q2)) ̸= 1. Suppose z3 = gcd(S1,φ(GRg2q2)).

One can then proceed to compute z4 ≡ z3S−1
1 (mod φ(GRg2q2)). As a result, one can ob-

tain:

z5 ≡ zz4
2 ≡ α

z3 (mod GRg2q2) (3)

And since φ(GRg2q2) contains a product of z3 with degree higher than 1, for both cases (2)
and (3), the complexity to obtain α modulo GRg2q2 is O(GRg2q2).

8.10 Extracting α via KAZ-SIGN digital signature forgery detection procedure type
– 4

Through the KAZ-SIGN digital signature forgery detection procedure type – 4, the adver-
sary can proceed to obtain the value w80 ≡ αq0 (mod q2). For the adversary, the next step
would be to compute

z6 ≡ q−1
0 (mod φ(q2)).

Since gcd(q0,φ(q2)) = q0, and the fact that φ(q2) has the product q2
0 as its factor, we can

proceed to compute

z7 ≡ q−1
0 (mod

φ(q2)

q2
0

).

Upon obtaining the value z7, adversary would attempt to compute

w81 ≡ wz7
80 ≡ α

q0z7 ≡ α
1+φ(q2)q−1

0 t ̸≡ α (mod q2)

for some t ∈ Z.
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8.11 Modular linear equation of S2.

In this direction we obtain rF ≡ S1 (mod GRg).

From the above, observe that one can analyze S2 as follows,

S2 ≡ GS1r(α
S1 +h)r−1 ≡ GS1r(V

S1
1 +h)r−1

F (mod GRg)

Since GRg ≡ 0 (mod GS1r), it implies

(αS1 +h)r−1 ≡ (V S1
1 +h)r−1

F (mod GRg2)

where GRg2 = GRgGS−1
1r . Moving forward we have,

rFα
S1 − (V S1

1 +h)r+hrF ≡ 0 (mod GRg2) (4)

Let α̂ be the upper bound for αS1 and r̂ be the upper bound for r. From Conjecture 1, if
one has the situation where α̂ r̂ ≫ GRg2, then there is no efficient algorithm to output all
the roots of (4). That is, (4) usually has GRg2 many solutions, which is exponential in the
bit-size of GRg2.

To this end, since αS1 is exponentially large, it is clear to conclude that α̂ r̂ ≫ GRg2. This
implies, there is no efficient algorithm to output all the roots of (4).

8.12 Implementation of the Hidden Number Problem

From S2 to obtain α or r, is the hidden number problem.

8.13 Another “Expensive” Problem Related To KAZ-SIGN: The Second Order Dis-
crete Logarithm Problem (2-DLP)

Let N be a composite number, g a random prime in ZN of order Gg where at most Gg ≈ Nδ

for δ ∈ (0,1) and δ → 0. That is, gGg ≡ 1 (mod N). Choose a random prime Q ∈ Zφ(N)

of order GQ, where GQ ≈ φ(N)ε for ε → 1. That is, choose Q with a large order in Zφ(N).
Such Q, has it own natural order in Zφ(Gg). Let that order be denoted as GQg. We can
observe the natural relation given by QGQg ≡ 1 (mod Gg) and φ(N)≡ 0 (mod Gg).

Then choose a random integer x ∈ Zφ(Gg) where x ≈ φ(Gg). Suppose from the relation
given by

gQx (mod φ(N)) ≡ A (mod N) (5)

one has solved the Discrete Logarithm Problem (DLP) upon equation (5) in polynomial
time on a classical computer and obtained the value X where Qx ̸≡ X (mod φ(N)) and
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gX ≡ A (mod N), The relation Qx ̸≡ X (mod φ(N)) would result in the non-existence of
the discrete logarithm solution for Qx ≡ X (mod φ(N)).

The 2-DLP is, upon given the values (A,g,N,Q), one is tasked to determine x ∈ Zφ(Gg)

where x ≈ φ(Gg) such that equation (5) holds.

Let Qx ≡ T1 (mod φ(N). From the predetermined order of g ∈ ZN , during the process of
solving the DLP upon equation (5), a collision would occur prior to the full cycle of g. As
such, the process of solving the DLP upon equation (5) to obtain X ≈ Nδ would occur in
polynomial time on a classical computer. And since T1 < φ(N) and T1 ≈ N1, the relation
Qx ̸≡ X (mod φ(N)) will hold.

Furthering on the discussion, one has the relation gGg ≡ 1 (mod N). As such, from the
value X < Gg obtained from equation (5), one can construct the set of solutions given by
T0 = X +Ggt for t = 0,1,2,3, . . .. Now let Qx ≡ T1 (mod φ(N)). Following through,since
T1 is an element from the set of solutions, one can have the relation

tT1 =
T1 −X

Gg

Since Gg,X ≈ Nδ , and φ(N)≈ N, the complexity to obtain tT1 is O(N1−δ ). When deploy-
ing Grover’s algorithm on a quantum computer, the complexity to obtain tT1 is O(N

1−δ

2 ).

To this end, note that if one proceeds to solve the DLP upon Qx ≡ X (mod Gg), one can
obtain the value x0 ≡ x (mod GQg). From the preceding sections, this is in fact the MRP.
It is easy to see that with correct choice of parameters (x,GQg), the complexity of 2-DLP
and MRP can be made the same. Hence, a more “non-expensive” method in discussing the
needs of the KAZ-SIGN is directly via the MRP.

9. SPECIFICATION OF KAZ-SIGN

The challenges faced by the adversary is to retrieve α , either from:

1. V1 ≡ α (mod GRgq); or

2. w80 ≡ αq0 (mod q2).

Both are protected by the MRP. The MRP representation for both is given as follows:

1. tα = α−V1
GRgq ; and

2. tαq0 =
α

q0−w80
q2 .
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Due to the strategies during key generation, we have the complexity O(tα) = O(q). How-
ever, for O(tαq0 ), it would be super-exponential.

As such, the complexity of solving the MRP via V1 ≡ α (mod GRgq) will be the determin-
ing factor in identifying the suitable key length for each security level.

The following is the security specification for δ = 0.23 and β = 3.

Number of primes in P n = ℓ(N) Total security level, k
180 1509 128
258 2321 192
342 3241 256

Table 1

10. IMPLEMENTATION AND PERFORMANCE

10.1 Key Generation, Signing and Verification Time Complexity

It is obvious that the time complexity for all three procedures is in polynomial time.

10.2 Parameter sizes

We provide here information on size of the key and signature based on security level in-
formation from Table 1 (for δ = 0.23 and β = 3) where ℓ(V2) is the length of an output
generated by a 256-bit hash function.

NIST
Security

Level

Number of
primes

in P

Security
level,

k

Length of
parameter
N (bits)

Public
key size,

(V1,V2) (bits)

Private
key size,
α (bits)

Signature Size
(S1,S2)
(bits)

ECC key
size

(bits)

1 180 128 1509
≈ 218+256

= 474 ≈ 352 ≈ 690 256

3 258 192 2321
≈ 333+256

= 589 ≈ 530 ≈ 1050 384

5 342 256 3241
≈ 436+256

= 692 ≈ 700 ≈ 1390 521

Table 2

In the direction of the research, we also make comparison to ECC key length for the three
NIST security levels. KAZ-SIGN key length did not achieve its immediate target of having
approximately the same key length as ECC, but further research might find means and
ways.
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10.3 Key Generation, Signing and Verification Ease of Implementation

The algebraic structure of KAZ-SIGN has an abundance of programming libraries available
to be utilized. Among them are:

1. GNU Multiple Precision Arithmetic Library (GMP); and

2. Standard C libraries.

10.4 Key Generation, Signing and Verification Empirical Performance Data

In order to obtain benchmarks, we evaluate our reference implementation on a machine us-
ing GCC Compiler Version 6.3.0 (MinGW.org GCC-6.3.0-1) on Windows 10 Pro, Intel(R)
Core(TM) i7-4710HQ CPU @ 2.50GHz and 8.00 GB RAM (64-bit operating system, x64-
based processor).

We have the following empirical results when conducting 100 key generations, 100 sign-
ings and 100 verifications:

Time (ms)
Security level

Key generation Signing Verification
128 - KAZ1509 109 156 141
192 - KAZ2321 125 256 406
256 - KAZ3241 143 328 734

Table 3

11. ADVANTAGES AND LIMITATIONS

As we have seen, KAZ-SIGN can be evaluated through:

1. Key length

2. Speed

3. No verification failure

11.1 Key Length

KAZ-SIGN key length is comparable to non-post quantum algorithms such as ECC and
RSA. For 256-bit security, the KAZ-SIGN key size is 706-bits. ECC would use 521-bit
keys and RSA would use 15360-bit keys.
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11.2 Speed

KAZ-SIGN’s speed analysis results stem from the fact that it has short key length to achieve
256-bit security plus its textbook complexity running time for both signing and verifying
is O(n3) where parameter n here is the input length.

11.3 No verification failure

It is apparent that the execution of KAZ-SIGN parameter suitability detection proce-
dure together with KAZ-SIGN digital signature forgery detection procedure type – 1,
type – 2, type – 3, and type – 4 within the verification procedure will enable the verifica-
tion computational process by the recipient to verify or reject a digital signature that was
received by the recipient with probability equal to 1. That is, the probability of verification
failure is 0.

11.4 Limitation

As we have seen, limitation of KAZ-SIGN can be evaluated through:

1. Based on unknown problem, the Modular Reduction Problem (MRP)

11.4.1 Based on unknown problem, the Modular Reduction Problem (MRP)

The MRP is not a known hard mathematical problem which is quantum resistant and is sub-
ject to future cryptanalysis success in solving the defined challenge either with a classical
or quantum computer.

12. CLOSING REMARKS

The KAZ-SIGN digital signature exhibits properties that might result in it being a desirable
post quantum signature scheme. In the event that new forgery methodologies are found, as
long as the procedure can also be done by the verifier, then one can add the new forgery
methodology into the verification procedure. At the same time, the same forgery methodol-
ogy can be inserted into the signing procedure in order to eliminate any chances the signer
will produce a signature that will be rejected.

To this end, the security of the MRP is an unknown fact. We opine that, the acceptance of
MRP as a potential quantum resistant hard mathematical problem will come hand in hand
with a secure cryptosystem designed upon it. We welcome all comments on the KAZ-
SIGN digital signature, either findings that nullify its suitability as a post quantum digital
signature scheme or findings that could enhance its deployment and use case in the future.
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13. ILLUSTRATIVE FULL SIZE TEST VECTORS – 1

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration,
we provide a valid KAZ-SIGN signature pair S = (S1,S2). The valid KAZ-SIGN signature
will pass all 4 KAZ-SIGN digital signature forgery detection procedure types.

N :
16654099924025690560880991628826166333626342440673565018885011847989446
73390411604901732676624210376510769252181354174828223286340057028944019
91339669414651118456372695070769619863131971414241586048862803140660472
06653222207353469933659597534156792443205461406819169388949586947835045
09315984550444746877596669802184487731229941008215513808488975493742420
95332359872258964174269418980707061566230310986271334632962653419873630

52884725941333218996085207555 ≈ 21509

g :
6007

Gg :
66425249147392035103359575563682919206231140688573787652572381678879876

350990985890249087277450456295776000 ≈ 2355 ≈ 20.235(1509) ≈ N0.235

R :
6151

GRg :

964284630129748924872876000 ≈ 290 ≈ N0.059

q :
510448777152933395121394756292930303263

β :
3
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q0 :
18

Key generation

α :
23795998635764934778183308830914377023909540771135830852946599269190254

96097255204637957568543216615697901 ≈ 2351

V1 :
393805337536958212374732809632974096823830041303261728973144869901

MRP complexity upon tα

tα =
α −V1

GRgq
:

4834443879209665193903667718573914299631 ≈ 2132

α
q0 (mod q2) :

23341085929634437987314596924076919240346977784000852167653991139451869894936
894936

V2 = H(αq0 (mod q2)) :
c8838ebf3b288edbba3c5194ad00255c0f41cf18417ad81b632db468ac4ec77c
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Signing

h :
65133876991344733078341596968299428351189569662367156416727513857348413
756445

r :
64434422991185710321781966593154756698506469671726835614499550613822601
14062675325449957095427508973206297

S1 :
162141539275634078949291607242524249567710841497432389504463997441
152245299139420910033250424331772106297

S2 :
21920015674786222554775004311650528512345883386668655603271329212879056
7791260157702512923152378833968654

GS1 and GS1r :
3

Verification

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
133652097102473938554978305100500226480692748069063398592931726020026577
979230424366804109374976310532654

w1 = w0 −S2 :
−8554805964538828699277173801600505864276608579762315743978156610876398
9812029733335708813777402523436000
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KAZ-SIGN digital signature forgery detection procedure type – 2

w2 :
185550433764924278813272497314527183281514541891744417391360927736033706
015087305419456866811080975728654

w3 = w2 −S2 :
−3364972298293794673447754580197810184194429197494213864135236439275686
1776172852283056056341297858240000

KAZ-SIGN digital signature forgery detection procedure type – 3

w4 :
271631372904614057789312432640326539194

w5 :
271631372904614057789312432640326539194

w6 = w4 −w5 :
0

KAZ-SIGN digital signature forgery detection procedure type – 4

w7 :
1334851944916756502233467070490200275088137729984133792877787951889588950
0361

w80 :
2334108592963443798731459692407691924034697778400085216765399113945186989
4936

H(w80) :
c8838ebf3b288edbba3c5194ad00255c0f41cf18417ad81b632db468ac4ec77c

w9 = H(w80)−V2 :
0
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Final verification

y1 and y2 :
1649605779313174420707194720649601334572117608879507427970630731827296764
8473792649355072416388854205425319433803924499306513283968528771893558127
0174914333341019545490407719060962855864433632760659656562115022026290451
0613065658468909018572203626451208816322848617480981663439090425779019172
5356870022430747907578940049679844738716968457936377492924857207887294720
6038822250668887036798795601793202584605407949544071641833918193603620451
75018760061064172
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14. ILLUSTRATIVE FULL SIZE TEST VECTORS – 2

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Ta-
ble 2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illus-
tration, we provide a forged KAZ-SIGN signature pair S = (S1,S2) where the system pa-
rameters, (N,g,Gg,R,GRg,q,β ,q0,α,V1,V2,h,r,S1) are the same as in ILLUSTRATIVE
FULL SIZE TEST VECTORS – 1 and S2 ≡ G1r(V

S1
1 +h)S−1

1 (mod GRgq2). This signa-
ture pair will fail the KAZ-SIGN digital signature forgery detection procedure type – 1.

S2 :
13365209710247393855497830510050022648069274806906339859293172602002657
7979230424366804109374976310532654

GS1 and GS1r :
3

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
13365209710247393855497830510050022648069274806906339859293172602002657
7979230424366804109374976310532654

w1 :
0

Final verification

y1 and y2 :
16496057793131744207071947206496013345721176088795074279706307318272967
64847379264935507241638885420542531943380392449930651328396852877189355
81270174914333341019545490407719060962855864433632760659656562115022026
29045106130656584689090185722036264512088163228486174809816634390904257
79019172535687002243074790757894004967984473871696845793637749292485720
78872947206038822250668887036798795601793202584605407949544071641833918
19360362045175018760061064172
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15. ILLUSTRATIVE FULL SIZE TEST VECTORS – 3

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Ta-
ble 2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illus-
tration, we provide a forged KAZ-SIGN signature pair S = (S1,S2) where the system pa-
rameters, (N,g,Gg,R,GRg,q,β ,q0,α,V1,V2,h,r,S1) are the same as in ILLUSTRATIVE
FULL SIZE TEST VECTORS – 1 and S2 ≡ G1r(α

S1
F +h)S−1

1 (mod GRgq2). This signa-
ture pair will fail the KAZ-SIGN digital signature forgery detection procedure type – 2.

αF :
836677874525628952333309901

S2 :
18555043376492427881327249731452718328151454189174441739136092773603370
6015087305419456866811080975728654

GS1 and GS1r :
3

KAZ-SIGN digital signature forgery detection procedure type – 2

w2 :
18555043376492427881327249731452718328151454189174441739136092773603370
6015087305419456866811080975728654

w3 :
0

Final verification

y1 and y2 :
16496057793131744207071947206496013345721176088795074279706307318272967
64847379264935507241638885420542531943380392449930651328396852877189355
81270174914333341019545490407719060962855864433632760659656562115022026
29045106130656584689090185722036264512088163228486174809816634390904257
79019172535687002243074790757894004967984473871696845793637749292485720
78872947206038822250668887036798795601793202584605407949544071641833918
19360362045175018760061064172
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16. ILLUSTRATIVE FULL SIZE TEST VECTORS – 4

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Ta-
ble 2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illus-
tration, we provide a forged KAZ-SIGN signature pair S = (S1,S2) where the system pa-
rameters, (N,g,Gg,R,GRg,q,β ,q0,α,V1,V2,h,r,S1) are the same as in ILLUSTRATIVE
FULL SIZE TEST VECTORS – 1 and S2 ≡G1r(V

S1
1 +h+GRgx)S−1

1 (mod GRgq2). This
signature pair will pass the KAZ-SIGN digital signature forgery detection procedure
type – 1 and type – 2. However, this signature pair will fail the KAZ-SIGN digital
signature forgery detection procedure type – 3.

x :
83979572702499412928301458390323101308087899726770866609627658413325754
769564

S2 :
56812382075893960327626953383659838034185423078867828157611847133657300
931454133399214846703009514520654

GS1 and GS1r :
3

KAZ-SIGN digital signature forgery detection procedure type – 3

w4 :
494534786814188442830661195495705175715

w5 :
271631372904614057789312432640326539194

w6 :
222903413909574385041348762855378636521
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Final verification

y1 and y2 :
16496057793131744207071947206496013345721176088795074279706307318272967
64847379264935507241638885420542531943380392449930651328396852877189355
81270174914333341019545490407719060962855864433632760659656562115022026
29045106130656584689090185722036264512088163228486174809816634390904257
79019172535687002243074790757894004967984473871696845793637749292485720
78872947206038822250668887036798795601793202584605407949544071641833918
19360362045175018760061064172
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17. ILLUSTRATIVE FULL SIZE TEST VECTORS – 5

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Ta-
ble 2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illus-
tration, we provide a forged KAZ-SIGN signature pair S = (S1,S2) where the system pa-
rameters, (N,g,Gg,R,GRg,q,β ,q0,α,V1,V2,h,r,S1) are the same as in ILLUSTRATIVE
FULL SIZE TEST VECTORS – 1 and S2 ≡G1r(α

S1
F +h+GRgx)S−1

1 (mod GRgq2). This
signature pair will pass the KAZ-SIGN digital signature forgery detection procedure
type – 1 and type – 2. However, this signature pair will fail the KAZ-SIGN digital signature
forgery detection procedure type – 3.

αF :
836677874525628952333309901

x :
82565862562612747589564270519167035857663290247570881349064774484379403
852894

S2 :
30140958149545447105599719683252130773492274236272116594183417054363340
355571858741822413688107295224654

GS1 and GS1r :
3

KAZ-SIGN digital signature forgery detection procedure type – 3

w4 :
127087168374566234544582938363121955564

w5 :
271631372904614057789312432640326539194

w6 :
−144544204530047823244729494277204583630

25 KAZ-SIGN v1.4



Final verification

y1 and y2 :
16496057793131744207071947206496013345721176088795074279706307318272967
64847379264935507241638885420542531943380392449930651328396852877189355
81270174914333341019545490407719060962855864433632760659656562115022026
29045106130656584689090185722036264512088163228486174809816634390904257
79019172535687002243074790757894004967984473871696845793637749292485720
78872947206038822250668887036798795601793202584605407949544071641833918
19360362045175018760061064172

26 KAZ-SIGN v1.4



18. ILLUSTRATIVE FULL SIZE TEST VECTORS – 6

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Ta-
ble 2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illus-
tration, we provide a forged KAZ-SIGN signature pair S = (S1,S2) where the system
parameters, (N,g,Gg,R,GRg,q,β ,q0,α,V1,V2,h,r) are the same as in ILLUSTRATIVE
FULL SIZE TEST VECTORS – 1 and S1 ≡ r (mod GRgρq) and S2 ≡ GS1r(V

S1
1 +h)S−1

1
(mod GRgρq). This signature pair will pass the KAZ-SIGN digital signature forgery
detection procedure type – 1, type – 2 and type – 3. However, this signature pair will
fail the KAZ-SIGN digital signature forgery detection procedure type – 4.

ρ :
510448777152933395121394756292930303719

S1 :
16214153927563407894929160724252424395642666433850364851444728192259821
2610941740821833467830195748906297

S2 :
22807392184803364832876176871487225658679010767401979065147423384023689
5388972952725217052743843114352654

GS1 and GS1r :
3
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KAZ-SIGN digital signature forgery detection procedure type – 4

w7 :
11723205353592071894266270577419413524132727755238511832581293707859557
378009

w80 :
71464816757810045173252544995359662430386838091579106216311631544335756
563833

H(w80) :
004a6bcdfffc5593163222eb7144a53eb3b0fff4ada2bc5febdfad57d29c5744

w9 = H(w80)−V2 ̸= 0

Final verification

y1 and y2 :
16496057793131744207071947206496013345721176088795074279706307318272967
64847379264935507241638885420542531943380392449930651328396852877189355
81270174914333341019545490407719060962855864433632760659656562115022026
29045106130656584689090185722036264512088163228486174809816634390904257
79019172535687002243074790757894004967984473871696845793637749292485720
78872947206038822250668887036798795601793202584605407949544071641833918
19360362045175018760061064172
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