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1. INTRODUCTION

The proposed KAZ Digital Signature scheme, KAZ-SIGN (in Malay Kriptografi Atasi
Zarah - translated literally “cryptographic techniques overcoming particles”; particles here
referring to the photons) is built upon the hard mathematical problem coined as the Mod-
ular Reduction Problem (MRP). The idea revolves around the difficulty of reconstructing
an unknown parameter from a given modular reducted value of that parameter. The target
of the KAZ-SIGN design is to be a quantum resistant digital signature candidate with short
verification keys and signatures, verifying correctly approximately 100% of the time, based
on simple mathematics, having fast execution time and a potential candidate for seamless
drop-in replacement in current cryptographic software and hardware ecosystems.

2. THE DESIGN IDEALISME

(i) To be based upon a problem that could be proven analytically to require exponential
time to be solved;

(ii) To be able to prove analytically that the cryptosystem is indeed resistant towards
quantum computers;

(iii) To utilize problems mentioned in point (i) above in its full spectrum without having
to induce “weaknesses” in order for a trapdoor to be constructed;

(iv) To use “simple” mathematics in order to achieve maximum simplicity in design,
such that even practitioners with limited mathematical background will be able to
understand the arithmetic;

(v) Achieve 128 and 256-bit security with key length roughly equivalent to the non-
quantum secure Elliptic Curve Cryptosystem (ECC);

(vi) To achieve maximum speed upon having simplicity in design and short key length;

(vii) To have a sufficiently large signature space;

(viii) The computation overhead for both signing and verification increases slightly even if
the key size increases in the future;

(ix) To be able to be mounted on hardware with ease;

(x) The plaintext to signature expansion ratio is kept to a minimum.

One of our key strategy to obtain items (i) - (v) was by utilizing our defined Modular
Reduction Problem (MRP). It is defined in the following section.
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3. MODULAR REDUCTION PROBLEM (MRP)

Let N = ∏
j
i=1 pi be a composite number and n = ℓ(N). Let pk be a factor of N. Choose

α ∈ (2n−1,N). Compute A ≡ α (mod pk).

The MRP is, upon given the values (A,N, pk), one is tasked to determine α ∈ (2n−1,N).

4. COMPLEXITY OF SOLVING THE MRP

Let npk = ℓ(pk) be the bit length of pk. The complexity to obtain α is O(2n−npk ). When de-

ploying Grover’s algorithm on a quantum computer, the complexity to obtain α is O(2
n−npk

2 ).
In other words, if pk ≈ Nδ , for some δ ∈ (0,1), the complexity to obtain α is O(N1−δ ).
When deploying Grover’s algorithm on a quantum computer, the complexity to obtain α is
O(N

1−δ

2 ).

5. THE HIDDEN NUMBER PROBLEM (HNP) (Boneh and Venkatesan, 2001)

Fix p and u. Let Oα,g(x) be an oracle that upon input x computes the most u significant
bits of αgx (mod p). The task is to compute the hidden number α (mod p) in expected
polynomial time when one is given access to the oracle Oα,g(x). Clearly, one wishes to
solve the problem with as small u as possible. Boneh and Venkatesan (2001) demonstrated
that a bounded number of most significant bits of a shared secret are as hard to compute as
the entire secret itself.

The initial idea of introducing the HNP is to show that finding the u most significant bits of
the shared key in the Diffie-Hellman key exchange using users public key is equivalent to
computing the entire shared secret key itself.

6. THE HERMANN MAY REMARKS (Herrmann and May, 2008)

We will now observe two remarks by Herrmann and May. It discusses the ability and
inability to retrieve variables from a given modular multivariate linear equation. But before
that we will put forward a famous theorem of Minkowski that relates the length of the
shortest vector in a lattice to the determinant (see Hoffstein et al. (2008)).

Theorem 1. In an ω-dimensional lattice, there exists a non-zero vector v with

∥v∥ ≤
√

ω det(L)
1
ω

In lattices with fixed dimension we can efficiently find a shortest vector, but for arbitrary
dimensions, the problem of computing a shortest vector is known to be NP-hard under ran-
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domized reductions (see Ajtai (1998)). The LLL algorithm, however, computes in polyno-
mial time an approximation of the shortest vector, which is sufficient for many applications.

Remark 1. Let f (x1,x2, . . . ,xk) = a1x1 + a2x2 + . . .+ akxk be a linear polynomial. One
can hope to solve the modular linear equation f (x1,x2, . . . ,xk)≡ 0 (mod N), that is to be
able to find the set of solutions (y1,y2, . . . ,yk) ∈ Zk

N , when the product of the unknowns are
smaller than the modulus. More precisely, let Xi be upper bounds such that |yi| ≤ Xi for
1, . . . ,k. Then one can roughly expect a unique solution whenever the condition ∏i Xi ≤ N
holds (see Herrmann and May (2008)). It is common knowledge that under the same
condition ∏i Xi ≤ N the unique solution (y1,y2, . . . ,yk) can heuristically be recovered by
computing the shortest vector in an k-dimensional lattice by the LLL algorithm. In fact,
this approach lies at the heart of many cryptographic results (see Bleichenbacher and May
(2006); Girault et al. (1990) and Nguyen (2004)).

We would like to provide the reader with the conjecture and remark given in Herrmann and
May (2008).

Conjecture 1. If in turn we have ∏i Xi ≥ N1+ε then the linear equation f (x1,x2, . . . ,xk) =

∑
k
i=1 aixi ≡ 0 (mod N) usually has Nε many solutions, which is exponential in the bit-size

of N.

Remark 2. From Conjecture 1, there is hardly a chance to find efficient algorithms that in
general improve on this bound, since one cannot even output all roots in polynomial time.

7. THE KAZ-SIGN DIGITAL SIGNATURE ALGORITHM

7.1 Background

This section discusses the construction of the KAZ-SIGN scheme. We provide information
regarding the key generation, signing and verification procedures. But first, we will put
forward functions that we will utilize and the system parameters for all users.

7.2 Utilized Functions

Let H(·) be a hash function. Let φ(·) be the usual Euler-totient function. Let ℓ(·) be the
function that outputs the bit length of a given input.

7.3 System Parameters

From the given security parameter k, determine parameter j. Next generate a list of the
first j-primes larger than 2, P = {pi} j

i=1. Let N = ∏
j
i=1 pi. As an example, if j = 43, N

is 256-bits. Let n = ℓ(N) be the bit length of N. Choose a random prime in g ∈ ZN of
order Gg where at most Gg ≈ Nδ for a chosen value of δ ∈ (0,1) and δ → 0. That is,
gGg ≡ 1 (mod N). Choose a random prime R ∈ Zφ(N) of order GR, where GR ≈ φ(N)ε
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for ε → 1. That is, choose R with a large order in Zφ(N). Let nGR = ℓ(GR) be the bit
length of GR. Such R, has its own natural order in Zφ(Gg). Let that order be denoted as
GRg. We can observe the natural relation given by RGRg ≡ 1 (mod Gg) where φ(N) ≡ 0
(mod Gg) and φ(Gg) ≡ 0 (mod GRg). Let nφ(Gg) = ℓ(φ(Gg)) be the bit length of φ(Gg)
and nφ(GRg) = ℓ(φ(GRg)) be the bit length of φ(GRg). Let q be a random k-bit prime. Let
Q = ∏

25
i=1 pi = 116431182179248680450031658440253681535. Ensure that φ(φ(GRg))<

φ(φ(Q)). The system parameters are (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg)).

7.4 KAZ-SIGN Algorithms

The full algorithms of KAZ-SIGN are shown in Algorithms 1, 2, and 3.

Algorithm 1 KAZ-SIGN Key Generation Algorithm

Input: System parameters (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg))
Output: Public verification key pair, (V1,V2), and private signing key, α

1: Choose random prime a, α ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
2: Compute public verification key, V1 ≡ α (mod GRgq).
3: Compute secret parameter b ≡ aφ(φ(GRg)) (mod φ(Gg)).
4: Compute public verification key, V2 ≡ Q(αφ(Q)b) (mod qQ).
5: Output public verification keys, (V1,V2), keep signing key (α,b) secret and destroy a.

Algorithm 2 KAZ-SIGN Signing Algorithm

Input: System parameters (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg)), private signing key, (α,b),
and message to be signed, m ∈ ZN .

Output: Signature, S
1: Let m ∈ ZN be the message to be signed and let h = next prime(H(m)).
2: Choose ephemeral random prime r ∈ (2nφ(Gg)−2,2nφ(Gg)−1).
3: Compute secret parameter β ≡ rφ(φ(GRg)) (mod φ(Gg)).
4: Compute S ≡ (α(φ(Q)b))(h(φ(qQ)β )) (mod GRgqQ).
5: Output signature, S, and destroy (β ,r).
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Algorithm 3 KAZ-SIGN Verification Algorithm

Input: System parameters (g,k,q,Q,N,R,Gg,GRg,n,nφ(Gg)), public verification key pair,
(V1,V2), message, m, and signature, S.

Output: Accept or reject signature
1: Compute h = nextprime(H(m)).

2: Compute y ≡ (V φ(Q)
1 )(hφ(qQ)) (mod GRgQ) and SF1 =CRT ([V2

Q ,y], [q,GRgQ]).
3: Compute the following procedure: Set SF2 = 0. Set modulus = 1.
4: V Q ≡ (V φ(Q)

1 )(hφ(qQ)) (mod GRg)
5: for each factor rei

i of GRgQ do
6: for soln = 0,1,2, . . . ,rei

i −1 do
7: if soln mod gcd(Q,rei

i ) ̸≡ 1 (mod gcd(Q,rei
i )) then next; end if

8: if soln mod gcd(GRg,r
ei
i )̸≡V Q mod gcd(GRg,r

ei
i ) then next; end if

9: if soln ·Q mod gcd(q ·Q,rei
i )̸≡V2 mod gcd(q ·Q,rei

i )then next; end if
10: break
11: end for
12: SF2 =CRT ([SF2,soln], (modulus,rei

i ))
13: modulus = modulus · rei

i
14: end for
15: Compute w0 ≡ (S (mod GRgqQ))−S.
16: if w0 ̸= 0 then
17: Reject signature ⊥
18: else Continue Step 20
19: end if
20: Compute w1 ≡ (S (mod GRgqQ))−SF1.
21: if w1 = 0 then
22: Reject signature ⊥
23: else Continue Step 25
24: end if
25: Compute w2 ≡ S−SF2 (mod q).
26: if w2 = 0 then
27: Reject signature ⊥
28: else Continue Step 30
29: end if
30: Compute w3 ≡ QS (mod qQ)). Compute w4 = w3 −V2.
31: if w4 ̸= 0 then
32: Reject signature ⊥
33: else Continue Step 35
34: end if
35: Compute y1 ≡ g(R

S (mod Gg) (mod N).

36: Compute y2 ≡ g(R
(V φ(Q)

1 )(hφ(qQ)) (mod GRg)) (mod Gg)) (mod N).
37: if y1 = y2 then
38: accept signature
39: else reject signature ⊥
40: end if 5 KAZ-SIGN v1.6



Steps 15, 16, 17, 18, and 19, during verification are known as the KAZ-SIGN digital
signature forgery detection procedure type – 1, steps 20, 21, 22, 23, and 24 during
verification are known as the KAZ-SIGN digital signature forgery detection procedure
type – 2, steps 25, 26, 27, 28, and 29 during verification are known as the KAZ-SIGN
digital signature forgery detection procedure type – 3, steps 30, 31, 32, 33, and 34 during
verification are known as the KAZ-SIGN digital signature forgery detection procedure
type – 4.

8. THE DESIGN RATIONALE

In this section we will analyse the rationale behind the design vis-à-vis a valid signature
parameter S.

8.1 Proof of correctness (Verification steps 35, 36, 37, 38, 39, and 40)

We begin by discussing the rationale behind steps 35, 36, 37, 38, 39, and 40 with relation to
the verification process. Observe the following,

g(R
S (mod Gg)) ≡ gR((α(φ(Q)b))(h(φ(qQ)β )) (mod GRg)) (mod Gg)

≡ gR((α(φ(Q)))(h(φ(qQ))) (mod GRg)) (mod Gg)

≡ g(R
((V φ(Q)

1 (hφ(qQ)) (mod GRg)) (mod Gg)) (mod N)

because α ≡V (mod GRg), b≡ aφ(φ(GRg))≡ 1 (mod GRg) and β ≡ rφ(φ(GRg))≡ 1 (mod GRg)
since φ(Gg) ≡ 0 (mod GRg). As such the verification process does indeed provide an in-
dication that the signature is indeed from an authorized sender with the private signing key
α .

8.2 Proof of correctness (Verification steps 15, 26, 17, 18, and 19: KAZ-SIGN digital
signature forgery detection procedure type – 1)

In order to comprehend the rationale behind steps 15, 26, 17, 18, and 19, one has to observe
the following,

w0 ≡ (S (mod GRgqQ))−S = 0

because S < GRgqQ.

8.3 Proof of correctness (Verification steps 20, 21, 22, 23, and 24: KAZ-SIGN digital
signature forgery detection procedure type – 2)

In order to comprehend the rationale behind steps 20, 21, 22, 23, and 24, one has to observe
the following; obviously SF1 is not constructed with secret parameters (α,b). As such from
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w1 ≡ (S (mod GRgqQ))−SF1, we will have w1 ̸= 0.

8.4 Proof of correctness (Verification steps 25, 26, 27, 28, and 29: KAZ-SIGN digital
signature forgery detection procedure type – 3)

In order to comprehend the rationale behind steps 25, 26, 27, 28, and 29, one has to observe
the following; obviously SF2 is not constructed with secret parameters (α,b). As such from
w2 ≡ S−SF2 (mod q), we will have w2 ̸= 0.

8.5 Proof of correctness (Verification steps 30, 31, 32, 33, and 34: KAZ-SIGN digital
signature forgery detection procedure type – 4)

In order to comprehend the rationale behind steps 30, 31, 32, 33, and 34, one has to observe

w3 ≡ QS ≡ Q(αφ(Q)b) (mod qQ).

Hence,
w4 = w3 −V2 = 0.

8.6 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 1.

An adversary utilizing a valid signature, S and resends it as follows:

SF0 ≡ S+GRgqQx (mod θGRgqQ)

for some random value of x ∈ Z and small value of θ ∈ Z, such that ℓ(SF0)≈ ℓ(S). That is,
ℓ(SF0) is not suspicious to the verifier. It is easy to observe that SF0 will pass steps 35, 36,
37, 38, 38, 39, and 40. However, since

w0 ≡ (SF0 (mod GRgqQ))−SF0 ̸= 0 ∈ Z

the signature will fail KAZ-SIGN digital signature forgery detection procedure type – 1.

8.7 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 2

An adversary that constructs a forged signature S as follows; compute y ≡ (V φ(Q)
1 )(hφ(qQ))

(mod GRgQ) and S =CRT ([V2
Q ,y], [q,GRgQ]), and then transmits it as a signature S would

result in
w1 ≡ (S (mod GRgQ))−SF1 = 0.

It is easy to observe that S will pass steps 35, 36, 37, 38, 38, 39, and 40. However, the
signature will fail KAZ-SIGN digital signature forgery detection procedure type - 2.

7 KAZ-SIGN v1.6



8.8 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 3

An adversary that constructs a forged signature S as described in steps 3-14 within the
verification algorithm, and then transmits it as a signature S would result in

w2 ≡ S−SF2 (mod q) = 0.

It is easy to observe that S will pass steps 35, 36, 37, 38, 38, 39, and 40. However, the
signature will fail KAZ-SIGN digital signature forgery detection procedure type - 3.

8.9 Deriving forged signature identifiable by KAZ-SIGN digital signature forgery
detection procedure type – 4

An adversary that constructs a forged signature S without the private key α; and at the same
time aspires to pass steps 35, 36, 37, 38, 38, 39, and 40 would result in having to utilize the
relation

S ≡ (λ φ(Q)) (mod qQ)

where λ =V1+GRgqt is a prime for some t ∈Z and t is not the solution for the MRP(V1,α,GRgq).
It is clear that α ̸≡ V1 + GRgqt (mod qQ). As such, w4 = w3 −V2 ̸= 0, where w3 ≡
Q(λ φ(Q)) (mod qQ). Thus, the signature will fail KAZ-SIGN digital signature forgery
detection procedure type – 4.

8.10 Extracting α

An approach to forge the signature would be to produce either one of the following:

1. yα1 ≡ α (mod GRgqQ) OR

2. yα2 ≡ αφ(Q) (mod GRgqQ).

8.10.1 Producing yα1 ≡ α (mod GRgqQ)

From the public parameter V1 ≡ α (mod GRgq) and adversary can produce:

1. α (mod GRgq)

2. α (mod GRg)

3. α (mod q).

Thus, the adversary needs to obtain the corresponding parameters to execute the Chinese
Remainder Theorem (CRT) to obtain α (mod GRgqQ).

8 KAZ-SIGN v1.6



1. α (mod Q)→ to execute CRT with α (mod GRgq)

2. α (mod qQ)→ to execute CRT with α (mod GRg)

3. α (mod GRgQ)→ to execute CRT with α (mod q).

8.10.1.1 To obtain α (mod Q)

To obtain α (mod Q), the adversary will utilize equation S. Observe that

S ≡ (α(φ(Q)b))(h(φ(qQ)β ))≡ 1 ̸≡ α (mod Q).

Thus, this option is not viable.

8.10.1.2 To obtain α (mod qQ)

To obtain α (mod qQ), the adversary will utilize equation S. Observe that

S ≡ (α(φ(Q)b))(h(φ(qQ)β ))≡ α
φ(Q)b ̸≡ α (mod qQ).

Thus, this option is not viable.

8.10.1.3 To obtain α (mod GRgQ)

To obtain α (mod GRgQ), the adversary will utilize equation S. Observe that

S ≡ (α(φ(Q)b))(h(φ(qQ)β )) ̸≡ α (mod GRgQ).

Thus, this option is not viable.

8.10.2 Producing yα2 ≡ αφ(Q) (mod GRgqQ)

To obtain yα2, one begins with,

z1 ≡V φ(Q)
1 ≡ α

φ(Q) (mod q).

Then, one needs to produce the parameter αφ(Q) (mod GRgQ). However,

z2 ≡ S ≡ (α(φ(Q)b))(h(φ(qQ)β )) ̸≡ α
φ(Q) (mod GRgQ).

Thus, with the available parameters (S,V1), one is unable to produce yα2.

Another direction would be to observe

z2 ≡ GRgV2 ≡ GRgQα
φ(Q)b ̸≡ α

φ(Q) (mod GRgQ).

This direction, with the available (V2,S) would also not be able to produce yα2.

9 KAZ-SIGN v1.6



8.11 Modular linear equation of S

In this direction we analyze

S ≡ (α(φ(Q)b))(h(φ(qQ)β )) (mod GRgqQ)

Let

1. X1 ≡ αφ(Q)b (mod GRgqQ)

2. X2 ≡ hφ(qQ)β (mod GRgqQ)

Moving forward we have,

X1X2 −S ≡ 0 (mod GRgqQ) (1)

Let X̂1 be the upper bound for X1 and X̂2 be the upper bound for X2. From Conjecture 1, if
one has the situation where X̂1X̂2 ≫ GRgqQ, then there is no efficient algorithm to output
all the roots of (1). That is, (1) usually has GRgqQ many solutions, which is exponential in
the bit-size of GRgqQ.
To this end, since both αφ(Q)b and hφ(qQ)β are exponentially large, it is clear to conclude
that X̂1X̂2 ≫ GRgqQ. This implies, there is no efficient algorithm to output all the roots of
(1).

8.12 Implementation of the Hidden Number Problem (HNP)

From S, let us denote as follows:

1. x1 ≡ αφ(Q)b (mod GRgqQ)

2. x2 ≡ φ(qQ)β

Thus, S can be re-written as

S ≡ (x1)(hx2) (mod GRgqQ) (2)

for unknown pair (x1,x2). It is obvious that (2) is the HNP.

9. SPECIFICATION OF KAZ-SIGN

The challenge faced by the adversary is to retrieve α from V1 ≡ α (mod GRgq). It is pro-
tected by the MRP. The MRP representation is given as follows:

t =
α −V1

GRgq

10 KAZ-SIGN v1.6



Due to the strategies during key generation, we have the complexity O(t) = O(q).

As such, the complexity of solving the MRP via V1 ≡ α (mod GRgq) will be the determin-
ing factor in identifying the suitable key length for each security level.

The following is the security specification for δ = 0.23.

Number of primes in P ℓ(q) n = ℓ(N) Total security level, k
180 134 1509 128
258 198 2321 192
342 264 3241 256

Table 1

10. IMPLEMENTATION AND PERFORMANCE

10.1 Key Generation, Signing and Verification Time Complexity

It is obvious that the time complexity for all three procedures is in polynomial time.

10.2 Parameter sizes

We provide here information on size of the key and signature based on security level infor-
mation from Table 1 (for δ = 0.23).

NIST
Security

Level

Number of
primes

in P

Security
level,

k

Length of
parameter
N (bits)

Public
key size,

(V1,V2) (bits)

Private
key size,
α (bits)

Signature Size
(S)

(bits)

ECC key
size

(bits)
1 180 128 1509 ≈ 440 ≈ 352 ≈ 350 256
3 258 192 2321 ≈ 605 ≈ 530 ≈ 465 384
5 342 256 3241 ≈ 750 ≈ 700 ≈ 570 521

Table 2

In the direction of the research, we also make comparison to ECC key length for the three
NIST security levels. KAZ-SIGN key length did not achieve its immediate target of having
approximately the same key length as ECC, but further research might find means and
ways.

10.3 Key Generation, Signing and Verification Ease of Implementation

The algebraic structure of KAZ-SIGN has an abundance of programming libraries available
to be utilized. Among them are:

11 KAZ-SIGN v1.6



1. GNU Multiple Precision Arithmetic Library (GMP); and

2. Standard C libraries.

10.4 Key Generation, Signing and Verification Empirical Performance Data

In order to obtain benchmarks, we evaluate our reference implementation on a machine us-
ing GCC Compiler Version 6.3.0 (MinGW.org GCC-6.3.0-1) on Windows 10 Pro, Intel(R)
Core(TM) i7-4710HQ CPU @ 2.50GHz and 8.00 GB RAM (64-bit operating system, x64-
based processor).

We have the following empirical results when conducting 100 key generations, 100 sign-
ings and 100 verifications:

Time (ms)
Security level

Key generation Signing Verification
128 - KAZ1509 438 281 328
192 - KAZ2321 797 719 703
256 - KAZ3241 1938 1031 1391

Table 3

11. ADVANTAGES AND LIMITATIONS

As we have seen, KAZ-SIGN can be evaluated through:

1. Key length

2. Speed

3. No verification failure

11.1 Key Length

KAZ-SIGN key length is comparable to non-post quantum algorithms such as ECC and
RSA. For 256-bit security, the KAZ-SIGN key size is approximate 750-bits. ECC would
use 521-bit keys and RSA would use 15360-bit keys.

11.2 Speed

KAZ-SIGN’s speed analysis results stem from the fact that it has short key length to achieve
256-bit security plus its textbook complexity running time for both signing and verifying
is O(n3) where parameter n here is the input length.
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11.3 No verification failure

It is apparent that the execution of KAZ-SIGN parameter suitability detection proce-
dure together with KAZ-SIGN digital signature forgery detection procedure type – 1,
type – 2, type – 3, and type – 4 within the verification procedure will enable the verifica-
tion computational process by the recipient to verify or reject a digital signature that was
received by the recipient with probability equal to 1. That is, the probability of verification
failure is 0.

11.4 Limitation

As we have seen, limitation of KAZ-SIGN can be evaluated through:

1. Based on unknown problem, the Modular Reduction Problem (MRP)

11.4.1 Based on unknown problem, the Modular Reduction Problem (MRP)

The MRP is not a known hard mathematical problem which is quantum resistant and is sub-
ject to future cryptanalysis success in solving the defined challenge either with a classical
or quantum computer.

12. CLOSING REMARKS

The KAZ-SIGN digital signature exhibits properties that might result in it being a desirable
post quantum signature scheme. In the event that new forgery methodologies are found, as
long as the procedure can also be done by the verifier, then one can add the new forgery
methodology into the verification procedure. At the same time, the same forgery methodol-
ogy can be inserted into the signing procedure in order to eliminate any chances the signer
will produce a signature that will be rejected.

To this end, the security of the MRP is an unknown fact. We opine that, the acceptance of
MRP as a potential quantum resistant hard mathematical problem will come hand in hand
with a secure cryptosystem designed upon it. We welcome all comments on the KAZ-
SIGN digital signature, either findings that nullify its suitability as a post quantum digital
signature scheme or findings that could enhance its deployment and use case in the future.

Finally, we would like to put forward our heartfelt thanks to Prof. Dr. Abderrahmane
Nitaj from Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse Nor-
mandie, France for insights, comments, and friendship throughout the process. Next, spe-
cial thanks to Prof. Dr. Daniel J. Bernstein from University of Illinois at Chicago, United
States of America who has given his thoughts and efforts throughout versions 1.0 until
1.5β .2 of KAZ-SIGN which lead towards version 1.5 being announced. Today, our par-
ticipation in this NIST exercise has lead us towards new collaborations. We would like

13 KAZ-SIGN v1.6



to thank discussion opportunities with Kai Chieh Chang (Jay) and the team at Phison Ar-
chitecture Design Department which triggered discussions that lead towards version 1.6,
which resulted in reduced number of steps for KAZ-SIGN key gen, sign and verify algo-
rithms.
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13. ILLUSTRATIVE FULL SIZE TEST VECTORS – 1

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). That is, P = {3,5,7, . . . ,1087}. In this illustration, we provide a valid KAZ-SIGN
signature S. The valid KAZ-SIGN signature will pass all 4 KAZ-SIGN digital signature
forgery detection procedure types.

N :
16654099924025690560880991628826166333626342440673565018885011847989446733904116
04901732676624210376510769252181354174828223286340057028944019913396694146511184
56372695070769619863131971414241586048862803140660472066532222073534699336595975
34156792443205461406819169388949586947835045093159845504447468775966698021844877
31229941008215513808488975493742420953323598722589641742694189807070615662303109

8627133463296265341987363052884725941333218996085207555 ≈ 21509

g :
6007

Gg :
66425249147392035103359575563682919206231140688573787652572381678879876350990985

890249087277450456295776000 ≈ 2355 ≈ 20.235(1509) ≈ N0.235

R :
6151

GRg :

964284630129748924872876000 ≈ 290 ≈ N0.059

q :
18206603144869985452951603889167263698321

Q :
116431182179248680450031658440253681535
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Key generation

α :
31388609176757497290371888009447456702927575418511619755519062884542940596234850

16712193433032784670389489 ≈ 2351

V1 :
6716880208098075120438597678263690045215166961689440826969524649489

a :
31124469535369889998760669402905941965381575875722313979988618293305109648860101
779503414885672904761223147

b :
38008181542021124523527095378283058542111770662857075921113373906226298378711388
10434856176185874841600001

V2 :
412146251595839294135076300117086199254327735635171214834836626851178755173950

MRP complexity upon t

t =
α −V1

GRgq
:

178787808994295008768054827105930283065 ≈ 2128

16 KAZ-SIGN v1.6



Signing

h :
115760211758497538494681238275199133241749118140161026323854746247503823966177

r :
20076204133860574052715906836441534409715361631868200238417964000871425655152540
814212662977627986940527183

β :
23773746421608517633363078233668147526240430764602693720937944239610258967130543
73267190168399799910400001

S :
50269022193093585855417540036563114031198834186914551759148989779047194598444970
1989407269738968160560001

Verification

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
0

KAZ-SIGN digital signature forgery detection procedure type – 2

SF1 :
38682952988576219150640551409543845283304109692563701095106941328333662408761955
7433837457808533303140001

w1 :
11586069204517366704776988627019268747894724494350850664042048450713532189683014
4555569811930434857420000 ̸= 0
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KAZ-SIGN digital signature forgery detection procedure type – 3

SF2 :
46414453401135088759349184669071657909011131319880360468727960001

w2 :
12204052285054433543041381167637117701686 ̸= 0

KAZ-SIGN digital signature forgery detection procedure type – 4

w3 :
412146251595839294135076300117086199254327735635171214834836626851178755173950

w4 :
0

Final verification

y1 and y2 :
46471194339756570059624044654916287087501621810167255327572898030442351326941890
37504401385310131407970914858764681617610162668339230621373312650620303273534119
84840060149576400366937799926364322417542055020406880580130307064852709587721877
69116366115846980444395335904591619957831964754810672796778756182507980492743747
15631805710062494033838968858401210740778754967862825972302913827862713538395964
129336125251798311811768233882845332690266581183249793
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14. ILLUSTRATIVE FULL SIZE TEST VECTORS – 2

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS –
1 and S ≡ SV +GRgqQ where SV is a valid signature as in illustrative full size test vectors –
1. This signature will fail the KAZ-SIGN digital signature forgery detection procedure
type – 1.

SV :
50269022193093585855417540036563114031198834186914551759148989779047194598444970
1989407269738968160560001

S :
25467965253584280531464303313011846046433665548629220158074724672883911005477848
91287109935825918676420001

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
−20441063034274921945922549309355534643313782129937764982159825694979191545633351
89297702666086950515860000 ̸= 0

Final verification

y1 and y2 :
46471194339756570059624044654916287087501621810167255327572898030442351326941890
37504401385310131407970914858764681617610162668339230621373312650620303273534119
84840060149576400366937799926364322417542055020406880580130307064852709587721877
69116366115846980444395335904591619957831964754810672796778756182507980492743747
15631805710062494033838968858401210740778754967862825972302913827862713538395964
129336125251798311811768233882845332690266581183249793
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15. ILLUSTRATIVE FULL SIZE TEST VECTORS – 3

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1
and S ≡ (SV (mod GRgqQ

e ))+GRgqQ where SV is a valid signature as in illustrative full size
test vectors –1 and e is an n integer consisting some or all common primes between GRg and
Q. This signature will fail the KAZ-SIGN digital signature forgery detection procedure
type – 1.

e :
1963788631084825545

SV (mod
GRgqQ

e
) :

10960411747382341419721925468692979387817611690725134829420225094195128650707331
7872001

S :
20441063034274921947018590484093768785285974676807062920941586864051705028575374
40239653952594023833732001

KAZ-SIGN digital signature forgery detection procedure type – 1

w0 :
−20441063034274921945922549309355534643313782129937764982159825694979191545633351
89297702666086950515860000 ̸= 0

Final verification

y1 and y2 :
46471194339756570059624044654916287087501621810167255327572898030442351326941890
37504401385310131407970914858764681617610162668339230621373312650620303273534119
84840060149576400366937799926364322417542055020406880580130307064852709587721877
69116366115846980444395335904591619957831964754810672796778756182507980492743747
15631805710062494033838968858401210740778754967862825972302913827862713538395964
129336125251798311811768233882845332690266581183249793
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16. ILLUSTRATIVE FULL SIZE TEST VECTORS – 4

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS
– 1 and conduct the CRT upon the equation pair Y1 = V2Q−1 and Y2 ≡ (V φ(Q)

1 )(hφ(qQ))
(mod GRgQ) to obtain a forge signature. That is, S =CRT ([Y1,Y2], [q,GRgQ]). This signa-
ture will fail the KAZ-SIGN digital signature forgery detection procedure type – 2.

Y1 :
3539827079667798623596677967908505931970

Y2 :
85433692190473199370893534166960445882929079736216378764625940001

S :
38682952988576219150640551409543845283304109692563701095106941328333662408761955
7433837457808533303140001

KAZ-SIGN digital signature forgery detection procedure type – 2

SF1 :
38682952988576219150640551409543845283304109692563701095106941328333662408761955
7433837457808533303140001

w1 :
0

Final verification

y1 and y2 :
46471194339756570059624044654916287087501621810167255327572898030442351326941890
37504401385310131407970914858764681617610162668339230621373312650620303273534119
84840060149576400366937799926364322417542055020406880580130307064852709587721877
69116366115846980444395335904591619957831964754810672796778756182507980492743747
15631805710062494033838968858401210740778754967862825972302913827862713538395964
129336125251798311811768233882845332690266581183249793
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17. ILLUSTRATIVE FULL SIZE TEST VECTORS – 5

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS – 1
and the forge signature is constructed as per steps 3 – 14 during verification. This signature
will fail the KAZ-SIGN digital signature forgery detection procedure type – 3.

V Q :
511771172415229876329180001

S :
46414453401135088759349184669071657909011131319880360468727960001

KAZ-SIGN digital signature forgery detection procedure type – 3

SF2 :
46414453401135088759349184669071657909011131319880360468727960001

w2 :
0

Final verification

y1 and y2 :
46471194339756570059624044654916287087501621810167255327572898030442351326941890
37504401385310131407970914858764681617610162668339230621373312650620303273534119
84840060149576400366937799926364322417542055020406880580130307064852709587721877
69116366115846980444395335904591619957831964754810672796778756182507980492743747
15631805710062494033838968858401210740778754967862825972302913827862713538395964
129336125251798311811768233882845332690266581183249793
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18. ILLUSTRATIVE FULL SIZE TEST VECTORS – 6

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS
– 1 and S ≡ (V (φ(Q))

1 )(h(φ(qQ))) (mod GRgqQ). This signature will fail the KAZ-SIGN
digital signature forgery detection procedure type – 4.

S :
71887167484691852861114131036532368075204095381612126814996063428153080445754585
7041255228519857210720001

KAZ-SIGN digital signature forgery detection procedure type – 4

w3 :
149798613649072739264332433492353344084977336967903155438306664190753120931925

w4 :
−262347637946766554870743866624732855169350398667268059396529962660425634242025
̸= 0

Final verification

y1 and y2 :
46471194339756570059624044654916287087501621810167255327572898030442351326941890
37504401385310131407970914858764681617610162668339230621373312650620303273534119
84840060149576400366937799926364322417542055020406880580130307064852709587721877
69116366115846980444395335904591619957831964754810672796778756182507980492743747
15631805710062494033838968858401210740778754967862825972302913827862713538395964
129336125251798311811768233882845332690266581183249793
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19. ILLUSTRATIVE FULL SIZE TEST VECTORS – 7

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS –
1 and conduct the CRT upon the equation pair Y1 ≡ 1 (mod qQ

w ) where w = gcd(Q,GRg)

and Y2 ≡ (V φ(Q)
1 )(hφ(qQ)) (mod GRg) to obtain a forge signature. This signature will fail

the KAZ-SIGN digital signature forgery detection procedure type – 4.

Y1 :
1

Y2 :
511771172415229876329180001

S :
53498737379472412574332403469027722090916364071715199263321192825012228060225632
3984001

KAZ-SIGN digital signature forgery detection procedure type – 4

w3 :
116431182179248680450031658440253681535

w4 :
−412146251595839294135076300117086199254211304452991966154386595192738501492415
̸= 0

Final verification

y1 and y2 :
46471194339756570059624044654916287087501621810167255327572898030442351326941890
37504401385310131407970914858764681617610162668339230621373312650620303273534119
84840060149576400366937799926364322417542055020406880580130307064852709587721877
69116366115846980444395335904591619957831964754810672796778756182507980492743747
15631805710062494033838968858401210740778754967862825972302913827862713538395964
129336125251798311811768233882845332690266581183249793
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20. ILLUSTRATIVE FULL SIZE TEST VECTORS – 8

The following are parameters that illustrate KAZ-SIGN for 128-bit security (refer to Table
2). This is an example for j = 180. That is, P = {3,5,7, . . . ,1087}. In this illustration, we
provide a forged KAZ-SIGN signature S where the system parameters, (N,g,q,Q,Gg,R,
GRg,α,V1,V2,h) are the same as in ILLUSTRATIVE FULL SIZE TEST VECTORS
– 1 and construct a forged signature with a forged α of the form A = V1 + GRgqT for
some T ∈ Z and forged α is a prime. The constructed forged signature is of the form S ≡
(Aφ(Q))(hφ(qQ)) (mod GRgqQ). This signature will fail the KAZ-SIGN digital signature
forgery detection procedure type – 4.

T :
213352556447705824662451401171525808097

A :
37456916379644332321747373976406815025767587732373700620623354776126285151795293
68862426178981301088661489

S :
11326202440510645880460597749484758037910162025839420633474413964264981057825499
01009794143756006850580001

KAZ-SIGN digital signature forgery detection procedure type – 4

w3 :
149798613649072739264332433492353344084977336967903155438306664190753120931925

w4 :
−149798613649072739264332433492353344084977336967903155438306664190753120931925
̸= 0

Final verification

y1 and y2 :
46471194339756570059624044654916287087501621810167255327572898030442351326941890
37504401385310131407970914858764681617610162668339230621373312650620303273534119
84840060149576400366937799926364322417542055020406880580130307064852709587721877
69116366115846980444395335904591619957831964754810672796778756182507980492743747
15631805710062494033838968858401210740778754967862825972302913827862713538395964
129336125251798311811768233882845332690266581183249793
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